

EGU23-10462, updated on 26 Apr 2024 https://doi.org/10.5194/egusphere-egu23-10462 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

An assessment of sea-air CO₂ flux in the Arctic Ocean from 1985 to 2018

Sayaka Yasunaka^{1,2}, Manfredi Manizza³, Jens Terhaar^{4,5,6}, Are Olsen⁷, Ryohei Yamaguchi¹, Peter Landschützer^{8,9}, Eiji Watanabe¹, Dustin Carroll¹⁰, Hanani Adiwira², Jens Müller¹¹, and Judith Hauck¹² ¹Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

²Graduate School of Science, Tohoku University, Sendai, Japan

³Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA

⁴Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

⁵Physics Institute, University of Bern, Switzerland

⁶Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

⁷University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway

⁸Flanders Marine Institute (VLIZ), Ostend, Belgium

⁹Max Planck Institute for Meteorology, Hamburg, Germany

¹⁰Moss Landing Marine Laboratories, San José State University, California, USA

¹¹Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland

¹²Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

As a contribution to the Regional Carbon Cycle Assessment and Processes phase 2 (RECCAP2) project, we present synthesized estimates of the Arctic Ocean CO_2 uptake and their uncertainties from state-of-the-art surface ocean pCO_2 -observation products, global and regional ocean biogeochemical models and atmospheric inversions. For the period of 1985–2018, the Arctic Ocean represents a net sink of CO_2 of 103 ± 19 TgC yr⁻¹ in the pCO_2 products and 92 ± 30 TgC yr⁻¹ in the ocean biogeochemical models. While the long-term mean CO_2 uptake in the Arctic Ocean is primarily caused by steady-state fluxes of natural carbon, it is enhanced 28% by the atmospheric CO_2 increase and 15% by climate change. Moreover, the climate effect in the Arctic Ocean has become more important in recent years. The CO_2 uptake peaks in late summer and early autumn, and is low in winter because the sea ice cover inhibits sea-air fluxes. The annual mean of CO_2 uptake increased due to the decreasing sea ice concentration both in the pCO_2 products and the ocean biogeochemical models. Both, the mean CO_2 uptake and the trend, is substantially weaker in the atmospheric inversions. Uncertainty across all estimates is large especially in the estimated surface ocean pCO_2 values in the East Siberian Sea and the Laptev Sea, due to scarcity of observations and missing processes in models, such as land-sea fluxes and sediment dynamics.