

EGU23-1113, updated on 23 Apr 2024 https://doi.org/10.5194/egusphere-egu23-1113 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Application of Advanced Wflow_sbm Model with the CMIP6 climate projection for flood prediction in the data-scarce: Lake-Tana Basin, Ethiopia

Addis Alaminie¹, Giriraj Amarnath², Suman Padhee³, Surajit Ghosh⁴, Seifu Tilahun⁵, Muluneh Mekonnen⁶, Getachew Assefa⁷, Abdulkarim Seid⁸, Fasikaw Zimale⁹, and Mark Jury¹⁰ ¹Bahir Dar University, Bahir Dar Institute of Technology, Civil & Water Resources Engineering, Ethiopia (metaddi@gmail.com)

²International Water Management Institute, 127 Sunil Mawatha, Battaramulla, Sri Lanka (A.Giriraj@cgiar.org) ³International Water Management Institute, 127 Sunil Mawatha, Battaramulla, Sri Lanka (S.Padhee@cgiar.org)

⁴International Water Management Institute, 127 Sunil Mawatha, Battaramulla, Sri Lanka (S.Ghosh@cgiar.org)
⁵Bahir Dar University, Bahir Dar Institute of Technology, Civil & Water Resources Engineering, Ethiopia (satadm86@gmail.com)

⁶Environmental Sciences Applications Team, Regulatory Applications Branch, Alberta Energy Regulator, Calgary, Canada (muluneh@kth.se)

⁷School of Architecture, Planning and Landscape, University of Calgary, Calgary, Canada (gassefa@ucalgary.ca)

⁸International Water Management Institute, 127 Sunil Mawatha, Battaramulla, Sri Lanka (A.Seid@cgiar.org)

⁹Bahir Dar University, Bahir Dar Institute of Technology, Civil & Water Resources Engineering, Ethiopia (fasikaw@gmail.com)

¹⁰Physics Department, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico (mark.jury@upr.edu)

Abstract: Flood-attributed damages to infrastructure and public safety are expected to escalate in the future due to climate change, land use change, and associated hydrologic changes. In recent years, the reliability of flood forecasts has increased due to the availability of meteorological and hydrological data and advancements in flood prediction science. However, there is limited effort to apply emerging advanced hydrological models for flood prediction in poorly gauged watersheds. The overall objective of this study is to demonstrate applicability of climate model products to generate reliable flood predictions for data-limited and flood-prone areas. In this study, the most recent high-resolution climate models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) were evaluated to assess the impacts of projected climate change on the flood-prone areas of the Lake Tana basin, Ethiopia. The ensemble means of the top five CMIP6 climate model forcing data were used to calibrate and validate a free open-source, spatially distributed hydrological model known as Wflow sbm. Model-independent multi-algorithm optimization and parameter estimation tool is implemented for calibration and validation of Wflow. In terms of simulating runoff and flood events, application of Wflow_sbm to the Lake Tana basin provided promising results. This study serves as a major step towards the development and implementation of climate model product-driven hydrological model to assess flooding damages of future climate projections within the poorly gauged Lake Tana basin.