

EGU23-3303, updated on 28 Mar 2024 https://doi.org/10.5194/egusphere-egu23-3303 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Near-real-time global gridded daily CO₂ emissions

Xinyu Dou¹, Zhu Liu¹, Philippe Ciais², Jinpyo Hong³, Frédéric Chevallier², Yilong Wang⁴, Feifan Yan⁵, Steven J. Davis⁶, Monica Crippa⁷, Greet Janssens-Maenhout⁷, Diego Guizzardi⁷, Efisio Solazzo⁷, Xuanren Song¹, Da Huo¹, Piyu Ke¹, Hengqi Wang¹, and Zhu Deng¹

Timely, fine-grained gridded carbon emission datasets are particularly important for global climate change research. Often, fine-grained datasets are challenging to visualize over the globe, and clear visualization tools are also needed. Therefore, we present a near-real-time global gridded daily CO₂ emissions dataset (GRACED). GRACED provides gridded CO₂ emissions at a 0.1° × 0.1° spatial resolution and 1-day temporal resolution from cement production and fossil fuel combustion over seven sectors, including power, industry, residential consumption, ground transportation, domestic aviation, international aviation, and international shipping. GRACED is prepared from the near-real-time daily national CO2 emissions estimates (Carbon Monitor), multi-source spatial activity data and satellite NO2 data for time variations of those spatial activity data. Here, we examined the spatial patterns of sectoral CO₂ emission changes from January 1, 2019, to December 31, 2021. In 2021, most regions showed rapid rebounds in carbon emissions compared with 2020, reflecting the continuing challenges to accelerate climate mitigation in the post-COVID era. GRACED provides the most timely and more refined overview than any other previously published datasets, which enables more accurate and timely identification of when and where fossil CO₂ emissions have rebounded and decreased as the world recovers from COVID-19 and witnesses contrasted efforts to decarbonize energy systems. Uncertainty analysis of GRACED gives a grid-level two-sigma uncertainty of value of ±19.9%, indicating the reliability of GRACED was not sacrificed for the sake of higher spatiotemporal resolution that GRACED provides. In addition, we also examined the distribution of emission in a grid-wise perspective for major emission datasets, and compared it with GRACED. The similarity in emission distribution was observed in GRACED and other datasets. One of the advantages of our dataset is that it provides worldwide near-realtime monitoring of CO₂ emissions with different fine spatial scales at the sub-national level, such as cities, thus enhancing our comprehension of spatial and temporal changes in CO₂ emissions and anthropogenic activities. With the continued extension of GRACED time series, we present crucial daily-level input to analyze CO₂ emission changes in the post-COVID era, which will

¹Department of Earth System Science, Tsinghua University, Beijing, China

²Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Université Paris-Saclay, Gif-sur-Yvette, France

³Department of Computer Science and Technology, Tsinghua University, Beijing, China

⁴Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

⁵Ministry of Education, Ocean University of China, Qingdao, China

⁶Department of Earth System Science, University of California, Irvine, USA

⁷European Commission, Joint Research Centre (JRC), Ispra, Italy

ultimately facilitate and aid in designing more localized and adaptive management policies for the purpose of climate change mitigation in the post-COVID era.