An additional plasma density peak at poleward of the equatorial ionization anomaly crests observed by Swarm

Chao Xiong1,2 and Yuyang Huang1

1Wuhan University, College of Electronic and Information, Department of Space Physics, Wuhan, China
(xiongchao@whu.edu.cn)

2Hubei Luojia Laboratory, 430079 Wuhan, China.

The equatorial ionization anomaly (EIA) is one of the most important phenomena at equatorial and low latitudes, which is caused by the daytime eastward electric field via E×B effect. The well-developed EIA at dayside is thought to be a quite large structure with two crests extending to ±15° magnetic latitude, and the plasma density distributes quite smooth along the magnetic fluxtube. However, an additional density peak at poleward of the EIA crests is sometimes observed from the high-resolution plasma density measurements of Swarm. The additional peak is observed at the poleward of EIA crest only in the summer hemisphere, and shows a local time preference between 09:00 and 24:00. From a global view, the additional peak has relatively large occurrence at the northern hemisphere in the pacific longitudes. From the perspective of constellation, the Swarm B can revisit the same longitude of Swarm A/C, though with a certain time day. The delay time gradually increases from a few minutes to a few hours. By comparing the location of the additional peak observed by Swarm B and Swarm A/C, we found the peak keeps at a rather constant latitude irrespective of the delay time between Swarm satellites. Possible drivers for causing such additional peak have been further discussed.