

EGU23-4684, updated on 18 Apr 2024 https://doi.org/10.5194/egusphere-egu23-4684 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Contrasting patterns in the temperature dependence of wetland CH₄ and CO₂ emissions across globally geographic climate gradients

Hongyang Chen and Xuhui Zhou

Northeast Forestry University, Harbin, China (chenhongyang0629@163.com)

Determining the temperature dependence of wetland CH₄ and CO₂ emissions is critical for predicting the impacts of climate change on greenhouse gas (GHGs) emissions in wetland ecosystems. However, the spatial variation for temperature dependence of wetland CH₄ and CO₂ emissions is poorly understood, especially at the global scale. Here, we investigate the temperature dependencies of wetland CH₄ and CO₂ emissions across large-scale climatic gradients using 56,271 daily paired observations of ecosystem-level CH₄ and CO_2 emissions in 45 widely distributed from FLUXNET-CH₄ database. The temperature dependencies of CH₄ the CO₂ emissions show contrasting spatial patterns across globally geographic climate gradients. Specifically, the temperature dependence of CH₄ emissions increased with increasing mean annual temperature (MAT), but the opposite was true for that of CO₂ emissions. The ratio of CH₄ to CO₂ emissions was positively dependent on temperature when only MAT and mean annual precipitation were greater than 4.7 °C and 483 mm, respectively. Our results imply that the relative contribution of CH_4 to total GHG emissions increases with ambient temperature increases in a warmer and wetter climate region and could act as a positive feedback mechanism in the future.