

EGU23-6267, updated on 27 Apr 2024 https://doi.org/10.5194/egusphere-egu23-6267 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Daily extremes from the MSWEP global rainfall dataset compared to estimates from buoy networks through MEVD-based downscaling

Giorgio Dalmasso^{1,2}, Emmanouil Anagnostou⁸, Luca Brocca⁴, Elsa Cattani⁵, Gaby Gruendemann³, Lanxin Hu⁸, Sante Laviola⁵, Vincenzo Levizzani⁵, Francesco Marra^{5,10}, Christian Massari⁴, Efrat Morin⁶, Efthymios Nikolopoulos⁷, Ruud van Der Ent³, Enrico Zorzetto⁹, and Marco Marani¹ ¹Department of Civil, Environmental, and Architectural Engineering, University of Padova, Padova, Italy

²Scuola Universitaria Superiore IUSS, Pavia, Italy

³Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

⁴Research Institute for Geo-Hydrological Protection, National Research Council (CNR), Perugia, Italy

⁵National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Bologna, Italy

⁶The Fredy and Nadine Hermann Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel

⁷Civil and Environmental Engineering Dept., Rutgers University, New Jersey, USA

⁸Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut

⁹Program in atmospheric and oceanic sciences, Princeton University NJ

¹⁰Department of Geosciences, University of Padova, Italy

Estimating the frequency of extreme precipitation events, both locally and over extended areas, is key for developing risk reduction measures in present and future climates. Large areas of the world are characterized by sparse or absent rain-gauge networks, which poses significant challenges to the estimation of extreme events in many applications. Remote sensing and reanalysis datasets may contribute to filling some of these gaps, but their use meets some important obstacles: 1) remote sensing/reanalysis rainfall estimates are defined at coarse resolutions, thereby preventing direct validations against ground observations; 2) they usually span a ~20-year observation period, making it difficult to estimate the frequency of large extremes; 3) they suffer from significant uncertainties. Using the novel Metastatistical Extreme Value Distribution (MEVD) and a recent statistical downscaling technique, we compare ground and satellite-based/model estimates of rainfall to quantify the improvement achieved through downscaling in high-quantile quantification. We focus on ocean rainfall observations, which are rarely considered in validating global databases, from the Tao-Triton, Pirata, and Rama buoy networks. We quantify the estimation uncertainty for point extremes associated with the MSWEP rainfall dataset. We find that the MEVD-based extreme value downscaling approach generally improves point extreme estimates.