ISAMO (Iron Salt Atmospheric Methane Oxidation)

Matthew S. Johnson¹, Maarten M. J. W. van Herpen², Berend v/d Kraats³, Qinyi Li⁴, Alfonso Saiz-Lopez⁴, Jesper B. Liisberg¹, Luisa Pennacchio¹, and Thomas Röckmann⁵

¹Department of Chemistry, University of Copenhagen, Copenhagen, Denmark (msj@chem.ku.dk)
²Acacia Impact Innovation BV; Heesch, The Netherlands
³OceansX, Bergen, The Netherlands
⁴Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC; Madrid, Spain
⁵Institute for Marine and Atmospheric Research Utrecht, Utrecht University; Utrecht, the Netherlands

Methane is a well-mixed greenhouse gas responsible for >1/3 of global warming since pre-industrial times whose atmospheric burden continues to increase with a new record set in 2022. Active chlorine in the atmosphere is poorly constrained and so is its role in the oxidation of methane. This uncertainty propagates into methane source budgets through isotope-constrained top-down models, in which the observed abundance of 13C in tropospheric methane (commonly expressed as δ^{13}C-CH₄) is used to constrain the sources of methane using their characteristic δ^{13}C-CH₄ values. These models need to account for the change in the observed δ^{13}C-CH₄ by the Cl and OH sinks, which shift the observed isotope towards higher δ^{13}C-CH₄ values of fossil fuel sources, and away from 13C depleted biological sources. The ISAMO project focuses on the hypothesis that Cl atoms are produced naturally by the action of sunlight on particles containing iron and chloride and these chlorine atoms oxidize atmospheric methane. To study this, we use the sensitive and selective indirect quantification of the concentration of atomic Cl through the strong carbon kinetic isotope effect (KIE) in the CH₄ + Cl reaction, which leaves the remaining CH₄ enriched in 13C, and producing extremely 13C-depleted CO. We will present field and laboratory observations and global modelling, including CO isotope measurement from flasks samples across the North Atlantic. We show how this mechanism affects 13C depletion in atmospheric CO and how the corresponding 13C enrichment in CH₄ affects global methane emission estimates.