

EGU23-9161, updated on 27 Apr 2024 https://doi.org/10.5194/egusphere-egu23-9161 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Organic, inorganic and total bromine observations around the extratropical tropopause and lowermost stratosphere

Meike Rotermund¹, Andreas Engel², Jens-Uwe Grooß³, Peter Hoor⁴, Markus Jesswein², Flora Kluge¹, Tanja Schuck², Bärbel Vogel³, Thomas Wagenhäuser², Benjamin Weyland¹, Andreas Zahn⁵, Siyuan Zheng³, and Klaus Pleilsticker¹

¹Ruprecht-Karls-Universität Heidelberg, Institute of Environmental Physics, Department of Physics and Astronomy, Heidelberg, Germany (meike.rotermund@iup.uni-heidelberg.de)

Organic, inorganic and total bromine (Br^{tot}) around the upper troposphere and lower stratosphere (UTLS) were measured over southern Argentina and the surrounding regions extending down to the Antarctic Peninsula in September and November of 2019. These observations were recorded from the German High Altitude and LOng range research aircraft (HALO) as part of the Transport and Composition of the Southern Hemisphere UTLS (SouthTRAC) research campaign. Total bromine (Brtot) is inferred from measured total organic bromine (Brorg) added to inorganic bromine (Br_v^{inorg}). Br^{org} is comprised of the bromine summed from CH₃Br, the halons, and the major very short-lived brominated species measured onboard HALO by the University of Frankfurt, while the Br_v is evaluated from limb measured BrO and CLaMS photochemical transport modelling (FZ Jülich) accounting for the BrO/Br_y ratio. Air mass transport pathways into the UTLS and the likely origins of bromine-rich air masses reaching the Southern Hemisphere (SH) lower stratosphere are identified through distributions of in situ measured transport (CO and N₂O) and air mass lag-time (SF₆) tracers as well as Lagrangian transport modelling. Additionally, Br^{tot} measured in the SH is compared with previous measurements observed in the Northern Hemisphere as part of the Wave-driven ISentropic Exchange (WISE) research campaign in fall 2017, as well as the long term trend in stratospheric bromine.

²Institute for Atmospheric and Environmental Science, Goethe University Frankfurt, Frankfurt, Germany

³Institute of Energy and Climate Research - Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany

⁴Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany

⁵Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany