

EGU23-9695, updated on 26 Apr 2024 https://doi.org/10.5194/egusphere-egu23-9695 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Biomass recovery after fires dominates the carbon sink of boreal forests over the last three decades

Yidi Xu¹, Philippe Ciais¹, Wei Li², Sassan Saatchi³, Maurizio Santoro⁴, Alessandro Cescatti⁵, Dmitry Shchepashchenko^{6,7}, Guojin He⁸, Ceccherini Guido⁵, Jiaying He², Lei Fan⁹, Martin Brandt¹⁰, Rasmus Fensholt¹⁰, Jean-Pierre Wigneron¹¹, Heather Kay¹², Stephen Sitch¹³, Ana Bastos¹⁴, Simon Bowing¹, François Ritter¹, and Ibrahim Fayad¹

¹Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France

²Department of Earth System Science, Tsinghua University, Beijing, China

³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

⁴Gamma Remote Sensing, Gu^[]mligen, Switzerland

⁵Bio-Economy Unit, European Commission Joint Research Centre, Ispra, Italy

⁶International Institute for Applied Systems Analysis, Laxenburg, Austria

⁷Siberian Federal University, Krasnoyarsk, Russia

⁸Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China

⁹Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China.

¹⁰Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark

¹¹ISPA, UMR 1391, INRAE Nouvelle-Aquitaine, Université de Bordeaux, Bordeaux Villenave d'Ornon, France

¹²Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3FL, United Kingdom

¹³Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK

¹⁴Max Planck Institute for Biogeochemistry, Dept. of Biogeochemical Integration, Jena, Germany

Wildfires are an integral part of boreal forest dynamics. Understanding the carbon loss/recovery associated with fires is crucial to assess the stability of these slow-growing forests. Yet, the carbon balance from fires and post-fire forest recovery remain uncertain at the biome scale due to the lack of spatial details about rates of forest regrowth. Here, we quantify carbon losses from fire emissions and gains from post-fire regrowth using high spatial-resolution satellite data and a bookkeeping model. We combined a 35-year long record of burned area from the Landsat satellites since 1985 with local biomass-age regrowth curves derived from high-resolution satellite-based above ground biomass (AGB) datasets. We found that forests in Eurasia tend to recover faster and reach higher biomass levels than those in North America. Young forests recovering from post-1985 wildfires produced a carbon sink of 652±200 TgC during the period 1985 to 2020. The additional recovery of older secondary forests that burned before 1985 further adds a cumulative sink of 1659±346 TgC. Comparatively, old-growth forests that did not burn accumulated 930±233 TgC during the period 1985-2020. This result shows 71% of the contemporary carbon sink in AGB is contributed by recovery from fires. After accounting for fire emissions each year and for the slow decay of coarse woody debris after burning, the net AGB

carbon sink in boreal forests is 2108±234 TgC during 1985-2020. This study provides the first spatially explicit aboveground observation-based carbon budget of boreal forests and provides insights on the key factors that will control its future evolution.