A comparison of DNDC and DayCent to evaluate GHG emissions from China's main cropping systems

Junyi Wang¹, Matthias Kuhnert¹, Mohamed Abdalla¹, Pete Smith¹, Weixin Ding², Xiaoyuan Yan², Jianwen Zou³, Shiwei Guo³, Jianling Fan⁴, Yanbin Jiang⁵, Ronggui Hu⁶, Fusheng Li⁶, Yanbin Guo⁷, Zengming Chen², Xu Zhao², and Yingxin Xie⁸

¹Institute of Biological & Environmental Science, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK
²State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
³Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
⁴Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology
⁵Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
⁶College of Agriculture, Guangxi University, Nanning, 530004, China
⁷Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
⁸National Engineering Research Center for Wheat, State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 PR China

China contributes the largest share of cropland’s greenhouse gas (GHG) emissions globally. Processed-based biogeochemical models are useful tools to simulate GHG emissions from cropping systems. However, model comparisons are necessary to provide information for the application of models under different climate, soil, and crop conditions. In this study, two widely-used models (DayCent and DNDC) were evaluated and compared under four main cropping systems in China. The field observations from nine experiments were used for model calibration and validation. The DayCent and DNDC models simulated daily and seasonal CH₄ emissions from early rice-late rice and rice-wheat cropping systems reasonably well (r^2≥0.49 for daily simulation and nRME\leq52.9% for seasonal simulation). Both models were able to satisfactorily predict seasonal N₂O emissions from maize-wheat fields ($0.6\leq r^2<0.8$), but overestimated most daily N₂O fluxes at fertilisation and irrigation events. Significantly positive relationships were found between simulated and observed cumulative N₂O fluxes in spring maize growing season ($0.61\leq r^2<0.85$). The DNDC showed smaller differences in simulated and observed cumulative GHG emissions for spring maize and double rice, while DayCent showed better performance on estimating N₂O and CH₄ for maize-wheat and rice-wheat. This study shows that both models have strengths and weaknesses under a variety of cropping systems and growing regions, which are important to consider when choosing a model for a crop/region-specific simulation.