Please note that this session was withdrawn and is no longer available in the respective programme. This withdrawal might have been the result of a merge with another session.
CR5.1 | Thawing permafrost - stabilization versus decomposition of organic matter?
Thawing permafrost - stabilization versus decomposition of organic matter?
About 800 Pg soil carbon has been frozen for centuries to millennia. A large fraction of it is assumed to be thawed due to climate change in the near future. A rapid mineralization of this carbon to carbon dioxide or methane will directly alter the global carbon cycle resulting in positive feedback mechanisms that even accelerate climate change. However, permafrost-affected soils and the organic matter stored within are distributed heterogeneously with depth and across ecosystems. Is such thawing organic matter accessible to microorganisms and vulnerable to microbial decay, and hence will it be decomposed fast? Will a large part of it be stabilized at mineral surfaces or in soil aggregates, or will stabilization processes known from temperate soils be rather ineffective? Furthermore, what is the effect of hydrological changes to carbon mineralization or stabilization, particularly with respect to energy constraints of microorganisms? What will be effects of changing vegetation functions to soil organic matter dynamics? This session invites papers that investigate decomposition versus stabilization of thawing permafrost or active layer-organic matter. Contributions may be based on laboratory experiments, field observations, or modelling from the process level to the global scale.
Please decide on your access
Please use the buttons below to download the supplementary material or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the asset as indicated by the session. Copernicus Meetings cannot accept any liability for the content and the website you will visit.