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In order to improve climate projections, machine learning (ML)-based parameterizations have
been developed for Earth System Models (ESMs) with the goal to better represent subgrid-scale
processes or to accelerate computations by emulating existent parameterizations. These data-
driven models have shown success in approximating subgrid-scale processes based on high-
resolution storm-resolving simulations. However, most studies have used a particular machine
learning method such as simple Multilayer Perceptrons (MLPs) or Random Forest (RFs) to
parameterize the subgrid tendencies or fluxes originating from the compound effect of various
small-scale processes (e.g., turbulence, radiation, convection, gravity waves). Here, we use a
filtering technique to explicitly separate convection from these processes in data produced by the
Icosahedral Non-hydrostatic modelling framework (ICON) in a realistic setting. We use a method
improved by incorporating density fluctuations for computing the subgrid fluxes and compare a
variety of different machine learning algorithms on their ability to predict the subgrid fluxes. We
further examine the predictions of the best performing non-deep learning model (Gradient
Boosted Tree regression) and the U-Net. We discover that the U-Net can learn non-causal relations
between convective precipitation and convective subgrid fluxes and develop an ablated model
excluding precipitating tracer species. We connect the learned relations of the U-Net to physical
processes in contrast to non-deep learning-based algorithms. Our results suggest that
architectures such as a U-Net are particularly well suited to parameterize multiscale problems like
convection, paying attention to the plausibility of the learned relations, thus providing a significant
advance upon existing ML subgrid representation in ESMs.
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