

EGU24-11373, updated on 15 May 2024 https://doi.org/10.5194/egusphere-egu24-11373 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Foraminifera nitrogen isotopes and body size reveal an oxygen rise in the tropical upper ocean during the Paleocene-Eocene Thermal Maximum (PETM)

Simone Moretti^{1,2}, Alexandra Auderset^{1,3}, Curtis Deutsch⁴, Ronja Schmitz¹, Lukas Gerber¹, Ellen Thomas^{5,6}, Valeria Luciani⁷, Maria Rose Petrizzo⁸, Ralf Schiebel¹, Aradhna Tripati⁹, Philip Sexton¹⁰, Richard Norris¹¹, Roberta d'Onofrio⁷, James Zachos¹², Daniel Sigman⁴, Gerald Haug¹, and Alfredo Martínez-García¹

¹Max Planck Institute for Chemistry, Climate Geochemistry Department, Mainz, Germany (simone.moretti@mpic.de) ²Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche, Bologna, Italy

Tistituto di Scienze Polari, Consiglio Nazionale delle Ricerche, Bologna, Ita

³University of Southampton, Southampton, United Kingdom ⁴University of Princeton, Princeton, United States

⁵Yale University, New Haven, United States

⁶Wesleyan University, Middletown, United States

⁷Università di Ferrara, Ferrara, Italy

⁸Università Degli Studi di Milano, Milan, Italy

⁹University of California, Los Angeles, United States

¹⁰The Open University, Milton Keynes, United Kingdom

¹¹Scripps Institute of Oceanography, University of California, San Diego, United States

¹²University of California, Santa Cruz, United States

Ocean's oxygen (O_2) is essential to most marine life forms and represent a fundamental component of the biogeochemical cycling of nitrogen and carbon. Its inventory is declining in response to global warming. Contrasting predictions about the future of the tropical oxygen deficient zones (ODZs) in numerical simulations and palaeoceanographic evidence for contracted ODZs during Cenozoic's warmest periods, make long-term predictions about the future of ocean O₂ challenging. We present new evidence for tropical ocean oxygenation during the Paleocene-Eocene Thermal Maximum (PETM), a rapid warming event that serves as a geologic analogue to ongoing warming. Foraminifera-bound nitrogen isotopes indicate that the tropical North Pacific ODZ contracted during the PETM, implying higher O₂. Metabolic modelling of aquatic ectotherms shows that a concomitant increase in planktic foraminifera size implies that seawater oxygen partial pressure (pO_2) rose in the shallow subsurface throughout the tropical North Pacific, beyond the spatial extent of the ODZs. These findings call for an oceanographic mechanism capable of both enhancing subsurface oxygenation and operating beyond the regional scale of the North Pacific ODZs, on millennial timescales. These divergent changes are consistent with Ocean General Circulation Models under SSP5-8.5 scenario for 2300, in which a decline in biological productivity allows tropical subsurface oxygen to rise even as global ocean oxygen declines. The tropical upper ocean oxygen increase may have relieved physiological stress, helping to avoid a mass extinction

in planktic organisms during the PETM, in spite of the largest benthic extinction of the Cenozoic.