

EGU24-12639, updated on 09 May 2024 https://doi.org/10.5194/egusphere-egu24-12639 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Nordic Sea convection led abrupt North Atlantic warm events during Dansgaard-Oeschger cycles

Margit Simon^{1,2}, Francesco Muschitiello³, Henrik Sadatzki⁴, Sarah Berben⁵, Tobias Friedrich⁶, Dag-Inge Blindheim¹, Lukas Wacker⁷, Eystein Jansen^{8,2}, and Trond Dokken^{1,2}

¹NORCE Norwegian Research Centre, NORCE KLIMA, Bergen, Norway (msim@norceresearch.no)

²Bjerknes Centre for Climate Research, Bergen 5007, Norway

³Department of Geography, Cambridge University, UK

⁴Alfred Wegener Institute, Am Alten Hafen 26, 27568 Bremerhaven, Germany

⁵IMDC, Van Immerseelstraat 66, 2018, Antwerp, Belgium

⁶Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822

⁷ETH Zullrich, Labor fullr Ionenstrahlphysik (LIP), Otto-Stern-Weg 5. 8093 Zullrich, Switzerland

⁸Department of Earth Science, University of Bergen, Bergen 5007, Norway

During the last glacial period changes in the strength of ocean convection in the high-northern latitudes contributed to abrupt global climate changes known as Dansgaard–Oeschger (DO) cycles. However, the lack of high-resolution empirical evidence has yet precluded inferring the physical coupling between ocean and atmosphere. We examined Nordic Sea (NS) circulation changes by reconstructing radiocarbon ventilation ages across four DO cycles in a marine sediment core hinging on a precise multi-tephra-based synchronization to Greenland ice cores. Our results show that open ocean convection in the NS resumed ahead of the abrupt air-temperature increases recorded in ice cores by \Box 400 years (95% range: 50-660 years). Thus, implying an active role of ocean dynamics where abrupt warming transitions are likely a nonlinear response to more gradual resumption of NS convection.