EGU24-12976, updated on 19 Jan 2025 https://doi.org/10.5194/egusphere-egu24-12976 EGU General Assembly 2024 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License. ## A piping erosion susceptibility map of Europe **Anita Bernatek-Jakiel**¹, Matthias Vanmaercke², Jean Poesen^{2,3}, Anna Biernacka¹, Pasquale Borrelli⁴, Anastasiia Derii¹, Joanna Hałys¹, Joseph Holden⁵, Gergely Jakab⁶, Michał Jakiel¹, Panos Panagos⁷, Dawid Piątek¹, Taco H. Regensburg⁵, Jan Rodzik³, Estela Nadal-Romero⁸, Mateusz Stolarczyk¹, Els Verachtert⁹, Patryk Wacławczyk¹, and Wojciech Zgłobicki³ ¹Jagiellonian University, Faculty of Geography and Geology, Institute of Geography and Spatial Management, Krakow, Poland (anita.bernatek@uj.edu.pl) Soil erosion represents a crucial environmental issue worldwide that threatens land, freshwater, and oceans. Subsurface erosion by soil piping occurs in almost all climatic zones of the world and in various soil types. Its occurrence changes the conditions for controlling measures to reduce soil degradation. However, it remains one of the most overlooked soil erosion processes, and its global and regional recognition is poorly documented. This project aims to construct a piping erosion susceptibility map of Europe in order to identify locations affected by this process, and where specific erosion control measures should be taken. Firstly, we compiled a database of soil piping-related features, i.e. pipe roof collapses (PCs) and pipe outlets in the European Union and the UK that consists of 6841 locations having piping-related features (6171 PCs and 670 outlets), among which the location of 88% features is known at a resolution of 25 m. Then, this database is used to model the susceptibility of soils to piping erosion at the European scale. We applied the logistic regression model using the scikit-learn library in Python. The following environmental factors are tested: topography (such as slope and height difference), pedology (content of silt, clay, sand, and coarse fragments), land use and land cover, and climate (such as effective precipitation). Our preliminary result clearly shows that it is feasible to accurately identify the European hotspots susceptible to piping erosion, based on a combination of land use, topographic and soil variables (AUC >0.75). The presented map is an important step towards incorporating subsurface soil erosion into regional and global soil erosion models. This research is part of a project "Building excellence in research of human-environmental systems ²Division of Geography and Tourism, KU Leuven, Heverlee, Belgium ³Institute of Earth and Environmental Sciences, UMCS, Lublin, Poland ⁴Roma Tre University, Roma, Italy ⁵School of Geography, University of Leeds, United Kingdom ⁶Eötvös Loránd University, Budapest, Hungary ⁷European Commission, Joint Research Centre (JRC), Ispra, Italy ⁸Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain ⁹Flemish Institute for Technological Research, Mol, Belgium with geospatial and Earth observation technologies" funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 952327. The research has also been supported by a grant from the Faculty of Geography and Geology under the Strategic Programme Excellence Initiative at Jagiellonian University.