Hyperspectral imaging system for ice core studies

Andrei Kurbatov1, Edward Brook2, Christo Buizert2, Theodore Carr3, John Fegyveresi4, Tyler Fudge5, Geoffrey Hargreaves6, Todd Hoefen7, Liam Kirkpatrick3, Curtis Labombard3, Richard Nunn3, Lindsay Powers3, Kevin Rock8, and Mikhail Zhizhin

1Climate Change Institute, University of Maine, Orono, USA (akurbatov@maine.edu)
2College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
3National Science Foundation Ice Core Facility, U.S. Geological Survey, Denver, CO, USA
4School of Earth & Sustainability, Northern Arizona University, Flagstaff, AZ, USA
5Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
6National Science Foundation Ice Core Facility, U.S. Geological Survey, Denver, CO, USA (retired)
7U.S. Geological Survey, Denver, CO, USA
8SPECIM, Spectral Imaging Ltd., Oulu Finland

Hyperspectral imaging (HSI) technology has been increasingly used in Earth and planetary sciences. This imaging technique has been successfully tested on ice cores using VNIR (visible and near-infrared, 380-1000 nm) (Garzonio et al., 2018) and near-infrared (900 - 1700 nm) (McDowell et al, 2023) line-scan cameras. Results show that HSI data greatly expand ice core line-scan imaging capabilities, previously used with gray or RGB cameras (see summary in Dey et al., 2023). Combinations of selected HSI bands from the hyperspectral data cube improve feature detection in ice core stratigraphy, and map distribution of volcanic material, dust, air bubbles, fractures, and ice crystals in ice cores. Captured spectral information provides unique fingerprints for specific materials present in ice cores. This method helps to guide ice core sampling because it provides non-destructive, rapid visualization of microstructural properties, layering, bubble contents, increases in dust, or presence of tephra material. Precise identification of these atmospheric components is important for understanding past climate drivers reconstructed from ice cores.

As part of the COLDEX project (Brook et al., this meeting) we adapted the SPECIM SisuSCS HSI system for ice core imaging. The ice core scanning system is housed inside the ca. -20ºC main NSF ICF freezer, and externally computer-controlled. The operator monitors scanning operations and communicates with personnel inside of the freezer via radio. The system is equipped with a SPECIM FX10 camera that measures up to 224 bands in the VNIR range. We modified the ice core holder tray and installed a heated enclosure for the camera. The system uses SCHOTT DCR III Fiber Optic light sources with an OSL2BIR bulb from Thorlabs. IR filters are removed to extend the light spectral range beyond the 700 nm limit without heating the ice core surface during rapid (<5 minutes) scanning of an entire meter-long section. Emitted light enters ice at a 45º angle from two top and two bottom light sources. To calibrate absolute reflectance we use three Spectralon panels with 100, 50 and 20% reflectance values with every scan as well as several secondary reflective standards and USAF targets for geometric corrections. We are developing Python-based
open source data processing routines and currently comparing HSI data with existing ice core physical and chemical measurements. The goal is to fully integrate the ice core HSI system with ice core processing at the NSF ICF.

