

EGU24-14008, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-14008 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Pan-regional characterization of the variability in the Indonesian Seas

Yuan Wang and Huijie Xue

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China (ywang21@xmu.edu.cn)

The Indonesian Seas feature a wide-spectrum of variations in hydrography and circulation. This study applies a simple frequency-based time series decomposition method on the 20-year model outputs without data-assimilation, and demonstrates the spatial distribution of the variations in intra-seasonal, semi-annual, annual, and inter-annual bands, respectively. The four bands of variations are further used in K-mean clustering to investigate the inherent dynamical similarities/dissimilarities for a pan-regional characterization. The clusters based on the variations of the sea-level/thermocline emphasize the competing impacts of the annual and inter-annual variations in the Indonesian Seas, which lays on a "cross-road" of the inter-annual variation dominated NE-SW oriented deep-ocean regime and the annual variation dominated NW-SE oriented marginal sea regime. The annual variation is primarily driven by the regional monsoon wind. Moreover, profiles of annual current variations show a significant difference between the main and east branch of the Indonesian Throughflow (ITF), where annual variations play a major role above (below) the thermocline in the main (east) branch. In general, the ITF variability is mainly influenced by the remotely generated inter-annual variability, regional annual forcings by monsoon, and local flow instability and fluctuations, with the semi-annual variation being minor but non-trivial.