

EGU24-1448, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-1448 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Unexpectedly small N_2O emissions from alpine permafrost rivers on the East Qinghai-Tibet Plateau

Liwei Zhang¹ and Emily Stanley²

¹Peking University, Beijing, China (zhangliwei@pku.edu.cn) ²University of Wisconsin-Madison, Madison, WI, USA (ehstanley@wisc.edu)

Streams and rivers emit substantial amounts of nitrous oxide (N₂O) and are therefore an essential component of global nitrogen (N) cycle. Permafrost soils store a large reservoir of dormant N that, upon thawing, can enter fluvial networks and partly degrade to N₂O, yet the role of waterborne release of N₂O in permafrost regions is unclear. Here we report N₂O concentrations and fluxes during different seasons between 2016 and 2018 in four watersheds on the East Qinghai-Tibet Plateau. Thawing permafrost soils are known to emit N₂O at a high rate, but permafrost rivers draining the East Qinghai-Tibet Plateau behave as unexpectedly minor sources of atmospheric N₂O. Such low N₂O fluxes are associated with low riverine dissolved inorganic N (DIN) after terrestrial plant uptake, unfavorable conditions for N₂O generation via denitrification, and low N₂O yield due to a small ratio of nitrite reductase: nitrous oxide reductase in these rivers. We estimate fluvial N₂O emissions of 0.432–0.463 Gg N₂O-N yr⁻¹ from permafrost landscapes on the entire Qinghai-Tibet Plateau, which is marginal (~0.15%) given their areal contribution to global streams and rivers (0.7%). However, we suggest that these permafrost-affected rivers can shift from minor sources to strong emitters in the warmer future, likely giving rise to the permafrost non-carbon feedback that intensifies warming.