

EGU24-16554, updated on 15 May 2024 https://doi.org/10.5194/egusphere-egu24-16554 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Current research on Aquifer Thermal Energy Storage in Germany

Kathrin Menberg¹, **Ruben Stemmle**¹, Sebastian Bauer², Peter Bayer³, Guido Blöcher⁴, Stefan Kranz⁴, Clemens Felsmann⁵, Florian Hahn⁶, Haibing Shao⁷, Kai Zosseder⁸, and Philipp Blum¹ ¹Karlsruhe Institute of Technology, Institute of Applied Geosciences, Karlsruhe, Germany (menberg@kit.edu) ²Christian-Albrecht University of Kiel, Institute of Geosciences, Kiel, Germany (sebastian.bauer@ifg.uni-kiel.de) ³University of Halle-Wittenberg, Department of Applied Geology, Halle (Saale), Germany (peter.bayer@geo.uni-halle.de) ⁴GFZ German Research Centre for Geosciences, Potsdam, Germany (bloech@gfz-potsdam.de, kranz@gfz-potsdam.de) ⁵TU Dresden, Institute of Power Engineering, Dresden, Germany (clemens.felsmann@tu-dresden.de) ⁶Fraunhofer IEG, Institution for Energy Infrastructures and Geothermal Systems, Bochum, Germany (florian.hahn@ieg.fraunhofer.de)

⁷Helmholtz Centre for Environmental Research, Department of Environmental Informatics, Leipzig, Germany (haibing.shao@ufz.de)

⁸Technical University of Munich, Geothermal Energy Group, Munich, Germany (kai.zosseder@tum.de)

Around 30 % of Germany's final energy consumption can be attributed to heating and cooling in the building sector. Aquifer Thermal Energy Storage (ATES) allows sustainable and climate-friendly space heating and cooling and is therefore a promising technology that can contribute to decarbonizing this sector. However, further research on ATES is needed to promote the so far limited application of this technology in Germany and other countries. This work therefore gives an overview of current ATES research sites and projects in Germany collected in the project 'SpeicherCity'. Among other aspects, these projects address hydrogeochemical challenges, potential studies and the integration of ATES into existing energy systems. They include both lowtemperature (LT) and high-temperature (HT) ATES systems. This review also provides details on reservoir characteristics and well designs of the individual sites as well as information on the research goals and methods. Based on the comprehensive German research activities on ATES compiled in this work, lessons learned from the research findings and experiences with ATES operation and permission are highlighted.