

EGU24-16603, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-16603 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

High CO₂ emissions from drained peat soils that transition to organo-mineral soils: Implications for GHG inventories

Lars Elsgaard¹, Cecilie Hermansen¹, Peter L Weber¹, Charles Pesch¹, Mogens H Greve¹, Lis W de Jonge¹, Jens Leifeld², and Zhi Liang¹

¹Aarhus University, Department of Agroecology, Denmark (lars.elsgaard@agro.au.dk) ²Climate and Agriculture Group, Agroscope, Zurich, Switzerland

Drained agricultural peat soils are hotspots for biogenic CO₂ emissions, contributing to elevated atmospheric CO₂ levels. Due to microbial mineralization, the organic carbon (OC) content of these soils transitions to that of mineral soils, but it remains unclear how the residual OC content controls the rate of CO₂ emission. This hinders the integration of soils with 6-12% OC into national greenhouse gas inventories. Based on a comprehensive laboratory study with organic soils from 103 sites in Denmark, we show that area-scale CO₂ emissions from soils with >6% OC are not controlled by OC content and OC density, i.e., that soil OC content (wt/wt) is a poor predictor of area-specific CO₂ emissions. The empirical data suggest that CO₂ emission factors for 6-12% and >12% OC soils should be considered the same. On the other hand, the data also suggest that disaggregation of emission factors for soils with even higher OC contents is not necessary. We conclude that a global underestimation of CO₂ emissions from organic to organo-mineral soils due to agricultural management. Refining CO₂ emission estimates for 6-12% OC soils is critical for the accuracy of national inventories, but also for recognizing the climate benefits of emerging initiatives to rewet drained organic soils.