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Across geoscience, numerical models are used for understanding, experimentation, and prediction

of complex systems. Many of these models are computationally intensive and involve sub-models

for certain processes, often known as parameterisations. Such parameterisations may capture

unresolved sub-grid processes, such as turbulence, or represent fast-moving dynamics, such as

gravity waves, or provide a combination of the two, such as microphysics schemes.

Recently there has been significant interest in incorporating machine learning (ML) methods

into these parameterisations. Two of the main drivers are the emulation of computationally

intensive processes, thereby reducing computational resources required, and the development of

data-driven parameterisation schemes that could improve accuracy through capturing ‘additional

physics’.

Integrating ML sub-models in the context of numerical modelling brings a number of challenges,

some of which are scientific, others computational. For example, many numerical models are

written in Fortran, whilst the majority of machine learning is conducted using Python-based

frameworks such as PyTorch that provide advanced ML modelling capabilities. As such there is a

need to leverage ML models developed externally to Fortran, rather than the error-prone

approach of writing neural networks directly in Fortran, missing the benefits of highly-developed

libraries.

Interoperation of the two languages requires care, and increases the burden on researchers and

developers. To reduce these barriers we have developed the open-source FTorch library [1] for

coupling PyTorch models to Fortran. The library is designed to streamline the development

process, offering a Fortran interface mimicking the style of the Python library whilst abstracting

away the complex details of interoperability to provide a computationally efficient interface.

A significant benefit of this approach is that it enables inference to be performed on either CPU or

GPU, enabling deployment on a variety of architectures with low programmer effort. We will



report on the performance characteristics of our approach, both in the CPU and GPU settings and

include a comparison with alternative approaches.

This approach has been deployed on two relevant case studies in the geoscience context: a gravity-

wave parameterisation in an intermediate complexity atmospheric model (MiMA) based on

Espinosa et al. [2], and a convection parameterisation in a GCM (CAM/CESM) based on Yuval et al.

[3]. We will report on these applications and lessons learned from their development. 
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