

EGU24-18415, updated on 13 May 2024 https://doi.org/10.5194/egusphere-egu24-18415 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Improving SO₂ emissions from the point sources over the Middle East using satellite observations and inverse modeling.

Alexander Ukhov, Ibrahim Hoteit, and Georgiy Stenchikov

King Abdullah University of Science and Technology, Division of Physical Sciences and Engineering, Thuwal, Saudi Arabia (alexander.ukhov@kaust.edu.sa)

The Middle East faces important challenges from severe air pollution, marked by natural factors from frequent dust storms and human-induced emissions, notably SO_2 from power and desalination plants. These emissions significantly degrade air quality and contribute to sulfate aerosol formation, impacting climate and cloud formation. Accurate SO_2 emissions representation in this challenging environment is crucial. We aim to enhance the current SO_2 emission inventory by integrating satellite SO_2 observations and the FLEXPART-WRF model, driven by meteorological data from the WRF 10km resolution model run in 2016. In particular, we adapted the WRF-Chem's code for simulating the major SO_2 sinks (in cloud scavenging, dry and wet deposition, SO_2 oxidation by OH and H_2O_2) into the FLEXPART-WRF model. It allowed us to exclude the "background" SO_2 column loadings caused by the spatially distributed emissions and to invert the SO_2 emissions from the strong point sources on a daily basis. The improved SO_2 emission inventory is open to the community.