Combined Impacts of Weather Conditions and COPD on the Risk for Community-Acquired Pneumonia

Thomas Brenner\(^1\), Ann-Christine Link\(^1\), Christoph Reudenbach\(^1\), Jörg Bendix\(^1\), Barbara Weckler\(^2\), Hendrik Pott\(^2\), Jan Rupp\(^3\), Martin Witzenrath\(^4\), Gernot Rohde\(^5\), Mathias Pletz\(^6\), Wilhelm Bertram\(^7\), and Bernd Schmeck\(^2,7\)

\(^1\)Philipps University of Marburg, Geography, Germany
\(^2\)Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), German Center for Lung Research (DZL), Marburg, Germany.
\(^3\)Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
\(^4\)Charité - Universitätsmedizin Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
\(^5\)Medical Department I, Department of Respiratory Medicine, Goethe University Hospital, Frankfurt/Main, Germany, “Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)”
\(^6\)Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
\(^7\)Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.

Community-acquired pneumonia (CAP) is one of the most frequent causes of death among infectious diseases worldwide. Analyzing a dataset of 5,223 CAP patients in a German multicenter cohort study, our research uniquely explores the twofold combined impact of meteorological conditions, air quality conditions, and pre-existing chronic obstructive pulmonary disease (COPD) on CAP admissions. Both the twofold compound effect of absolute values of meteorological and air quality conditions and, even more, their day-to-day changes significantly influence CAP admissions. Our study emphasizes the important role of air quality conditions over meteorological conditions in contributing to increased CAP admissions, with these weather conditions exerting their influence with a lag time of approximately three to four days. Individuals with pre-existing COPD face the highest risk of CAP admission in the general cohort. The implications of our findings extend to supporting at-risk individuals through protective measures and providing healthcare providers with valuable insights for resource planning during pneumonia-inducing weather conditions.