Atmospheric isoprene measurements reveal larger-than-expected Southern Ocean emissions

Neil R.P. Harris¹, Valerio Ferracci¹⁻², James Weber³, Conor Bolas⁴⁻⁵, Andrew Robinson⁴⁻⁶, Fiona Tummon⁷, Pablo Rodríguez-Ros⁸, Pau Cortés-Greus⁸, Andrea Baccarini¹⁰⁻¹¹, Roderick L Jones⁴, Martí Galí⁸, Rafel Simó⁸, and Julia Schmale¹⁰

¹Cranfield University, Cranfield Environment Centre, Cranfield, United Kingdom of Great Britain – England, Scotland, Wales (neil.harris@cranfield.ac.uk)

²National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK

³School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK

⁴Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

⁵ITOPF, Old Broad Street, London EC2M 1QS, UK

⁶Schlumberger Cambridge Research, Madingley Road, Cambridge, CB3 0EL, UK

⁷Swiss Federal Office for Meteorology and Climatology MeteoSwiss, Payerne, Switzerland

⁸Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain

¹⁰Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

¹¹Laboratory of atmospheric processes and their impact, École Polytechnique Fédérale de Lausanne, Switzerland

Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol formation. Marine fluxes are poorly constrained due to the paucity of long-term measurements; this in turn limits our understanding of isoprene cycling in the ocean. Here we present the analysis of isoprene concentrations in the atmosphere measured across the Southern Ocean over 4 months in the summertime. Some of the highest concentrations (> 500 ppt) originated from the marginal ice zone (MIZ) in the Ross and Amundsen seas, indicating the MIZ is a significant source of isoprene at high latitudes. Using the global chemistry-climate model UKESM1 we show that current estimates of sea-to-air isoprene fluxes underestimate observed isoprene by a factor >20. A daytime source of isoprene is required to reconcile models with observations. The model presented here suggests such an increase in isoprene emissions would lead to >8% decrease in the hydroxyl radical in regions of the Southern Ocean, with implications for our understanding of atmospheric oxidation and composition in remote environments, often used as proxies for the pre-industrial atmosphere.