

EGU24-4032, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-4032 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Modelling the future distribution and biodiversity of European fen habitats under global change

Patrícia Singh¹, Borja Jiménez-Alfaro², Liene Auniṇa³, Petra Hájková¹, Tatiana Ivchenko⁴, Florian Jansen⁵, Tiina Kolari⁶, Paweł Pawlikowski⁷, Tomáš Peterka¹, Alessandro Petraglia⁸, Teemu Tahvanainen⁶, Łukasz Kozub⁷, and Michal Hájek¹

¹Masaryk University, Institute of Botany and Zoology, Brno, Czechia (patadurcanova@gmail.com)

Along with the historical decline of fens due to anthropogenic impact, climate change is expected to jeopardise fen biodiversity by reducing their geographic extent and altering species composition. Yet, the impact of climate change on fen distribution and biodiversity in the future remains unclear. We used 27,555 vegetation plots representing eight fen habitat types widely distributed in Europe to compute Ecosystem Distributional Models. For each fen habitat type, we projected their future potential occupancy area and range shift and evaluated the influence of different climate scenarios and groundwater pH on distribution and biodiversity. Our findings could be helpful for the nature protection authorities across Europe to assess conservational and restoration measures to mitigate potential future biodiversity loss in European fen habitats.

²University of Oviedo

³University of Latvia

⁴Russian Academy of Sciences

⁵Rostock University

⁶University of Eastern Finland

⁷University of Warsaw

⁸University of Parma