

EGU24-5504, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-5504 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Natural and restoration peatland pools contain mainly contemporary carbon

Joshua Dean¹, Michael Billett², Edward Turner^{3,4}, Mark Garnett⁵, Roxane Andersen⁶, Rebecca McKenzie⁷, Kerry Dinsmore⁷, Andy Baird³, Pippa Chapman³, and Joseph Holden³ ¹School of Geographical Sciences, University of Bristol, Bristol, United Kingdom (josh.dean@bristol.ac.uk) ²Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom ³water@leeds, School of Geography, University of Leeds, Leeds, United Kingdom ⁴Forestry and Land Scotland, South Region, Dumfries, Dumfries & Galloway, United Kingdom ⁵National Environmental Isotope Facility Radiocarbon Laboratory, East Kilbride, United Kingdom ⁶Environmental Research Institute, University of the Highlands and Islands, Thurso, United Kingdom ⁷UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, United Kingdom

Peatlands accumulate soil carbon (C) over millennia and are a globally important long-term terrestrial C store. This C store is at risk of destabilisation by climate and human disturbance. Many peatlands have pools or ponds at the surface which often contain very high C concentrations in organic (dissolved and particulate organic C) and gaseous (CO_2 and CH_4) forms. The radiocarbon composition (¹⁴C) of this C can tell is where these high C concentrations are primarily generated; i.e., from contemporary primary production or C released from deeper, old peat layers due to destabilisation. We present novel ¹⁴C and stable C (δ^{13} C) isotope data from six peatland pool locations in the United Kingdom. Our data are from two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). We focus on dissolved and particulate organic C and dissolved CO₂, with additional sediment, CH₄ and ebullition (bubble) observations (total n = 97). The majority of pools contained mainly contemporary C, with the most C (~50-75%) in all forms being younger than 300 years old. Both natural and restoration pools were found to transform and decompose organic C in the water column and emit CO_2 to the atmosphere. Mixing with ambient atmosphere and subsequent greenhouse gas emissions were more evident in the generally larger natural pools. Little evidence of deep, old C was found either in natural or restoration pools, even though there is substantial old C in the surrounding peat matrix. We did observe some potential evidence for old C emission via CH₄ ebullition, however. Our results suggest that some millennial-aged C can be emitted by peatland pools. But the overwhelming age of C in our sampled pools was contemporary. Our results suggest that restoration pools formed by management interventions such as ditch blocking can be effective at preventing the release of old C via the aquatic pathway.