Regional impacts poorly constrained by climate sensitivity

Ranjini Swaminathan1, Jacob Schewe2, Jeremy Walton3, Klaus Zimmermann4, Richard Betts3, Chantelle Burton1, Chris Jones3, Colin Jones3, Matthias Mengel2, Christopher Reyer2, Andrew Turner1, and Katja Weigel5

1Department of Meteorology, University of Reading, Reading, United Kingdom
2Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
3Met Office Hadley Centre, Exeter, United Kingdom
4Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
5Institute of Environmental Physics, University of Bremen, Bremen, Germany

Climate risk assessments must account for a wide range of possible future changes, so scientists often use many climate models in order to fully explore the range of potential changes in regional climates and their impacts. Many of the latest-generation global climate models have high values of effective climate sensitivity (EffCS), which are unlikely according to independent estimates of EffCS. It has been argued that these “hot” models are unrealistic and should therefore be excluded from analyses of climate change impacts. However, whether this would really improve regional impact assessments, or actually make them worse, is unclear. Here we show that there is no universal relationship between EffCS and projected changes in important climatic impact drivers. Analysing three different impacts - heavy rainfall, meteorological drought, and fire weather in important world regions, we find a significant correlation with EffCS only in some regions and for some metrics. Moreover, even in those cases, internal variability has a larger effect on projected changes than has EffCS. This means that impact studies should not select climate models based solely on their EffCS, which does not help constrain projections and may potentially neglect realistic impacts in models deemed “unrealistic” on the basis of their sensitivity. We recommend that model selection or filtering must be based on a more specific evaluation of models vis-à-vis the impact of interest.