

EGU24-6189, updated on 15 May 2024 https://doi.org/10.5194/egusphere-egu24-6189 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Contribution of LARES-2 to the realization of reference frames, deriving Earth rotation and gravity field parameters

Krzysztof Sośnica, Filip Gałdyn, Joanna Najder, Radosław Zajdel, and Dariusz Strugarek Wroclaw University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Wroclaw, Poland (krzysztof.sosnica@upwr.edu.pl)

LAser RElativity Satellite 2 (LARES-2) successfully joined the constellation of geodetic satellites tracked by Satellite Laser Ranging (SLR) stations on July 13, 2022. LARES-2 has a spherical shape and a very favorable area-to-mass ratio that minimizes the non-gravitational orbit perturbations. Due to very small retroreflectors, the spread of center-of-mass corrections for different detectors installed at SLR sites is much smaller than for LAGEOS satellites. LARES-2 orbits at a similar height as LAGEOS-1, however, with a complementary inclination angle of 70° forming a butterfly configuration together with LAGEOS-1.

Although the primary objective of LARES-2 is verification of the Lense-Thirring effect emerging from general relativity, the satellite also has a substantial impact on the geodetic parameters derived from SLR observations. We process 18 months of LARES-2 data and compare the LAGEOS-1/2 solutions with the combined LAGEOS-1/2+LARES-2 solutions. We show the impact of LARES-2 on the (1) SLR station coordinates, (2) pole coordinates, (3) length-of-day excess, (4) lowdegree gravity field parameters focusing on $C_{\rm 20}$ and $C_{\rm 30}$ coefficients, (5) scale of the reference frame, (6) geocenter motion. We show that LARES-2 can especially improve the Z component of the geocenter coordinates and de-correlate C₂₀ from the length-of-day parameter. The secular drifts of the ascending nodes for LARES-1 and LAGEOS-1 caused by C₂₀ are the same in terms of absolute values but with opposite signs. This allows us to successfully separate the measurements of length-of-day excess (or the UT rate) from the C_{20} -induced changes. We also analyze the empirical accelerations acting on LARES-2 which result from unmodeled non-gravitational orbit perturbations, such as thermal effects, and compare them to those observed for LAGEOS satellites. The observation geometry of LARES-2 is especially beneficial for stations located at high and medium latitudes, which allows it to improve the estimation of station coordinates provided by LAGEOS-1/2. Therefore, LARES-2 substantially contributes not only to general relativity and fundamental physics but also to space geodesy improving the future realizations of the international terrestrial reference frames.