

EGU24-6209, updated on 13 May 2024 https://doi.org/10.5194/egusphere-egu24-6209 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Chemical perturbations from Asian summer monsoon in the extratropical UTLS during PHILEAS

Peter Hoor¹, Martin Riese^{2,8}, Christian Rolf², Baerbel Vogel², Felix Ploeger², Stephan Borrmann³, Andreas Engel⁴, Michael Höpfner⁵, Mira Pöhlker⁶, Rolf Müller², Michael Volk⁸, Jörn Ungermann², Franziska Köllner^{1,3}, Helmut Ziereis⁷, Laura Tomsche^{1,7}, Sören Johansson⁵, Valentin Lauther⁸, Tanja Schuck⁴, Johannes Schneider³, and the PHILEAS TEAM^{*}

¹Johannes Gutenberg University Mainz, Institute for Atmospheric Physics, Physics, Mainz, Germany (hoor@uni-mainz.de)

²Forschungszentrum Jülich GmbH, Jülich, Germany

³Max-Planck-Institute for Chemistry Mainz. Mainz, Germany

⁴Goethe-University Frankfurt, Frankfurth, Germany

⁵Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen, Germany

⁶Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

⁷Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

⁸University of Wuppertal, Wuppertal, Germany

*A full list of authors appears at the end of the abstract

The Asian monsoon anticyclone (AMA) during northern summer is a major contributor to the transport of tropospheric air masses, rich in water vapour, aerosol precursors and surface emissions , into the UTLS. During previous HALO missions TACTS/ESMVal and WISE a significant impact of the monsoon export on the background composition of the lowermost stratosphere (LMS) could be observed. Recent observations during the research missions StratoClim and ACCLIP show evidence for a strong contribution of ammonium nitrate by the AMA to the UTLS aerosol budget and the Asian Tropopause Aerosol Layer (ATAL), likely relevant for cirrus cloud formation. These missions revealed that the northern central Pacific is a key region for the transition of air masses originating from the AMA and emissions from East Asia and China to cross the tropopause. Particularly, over the northern Pacific dynamical and diabatic forcings lead to a subsequent erosion of these eddies and to mixing into the background lower stratosphere.

We will present first results from the PHILEAS mission, which took place between August and October 2023 over Anchorage/Alaska and Europe. We found strong perturbations of the gas phase and chemical composition in the UTLS region. These perturbations can be linked to the Asian monsoon and east Asian pollution sources as well as to Canadian wild fires, which occurred prior and during the measurements.

Based on selected cases we will present clear evidence for cross tropopause transport and mixing of pollution from East Asian pollution and the AMA over the eastern Mediterranean as well as over the northern Pacific. We will show that these sources affected the aerosol as well as the gas phase composition of the lowermost stratosphere.

PHILEAS TEAM: O. Kachula2, J. Clemens2, F. Ekinci3, G. Günther2, F. Friedl-Vallon5, J. U. Grooß2, M. Jesswein4, L. Ort1,3, M. Rapp7, B. M. Sinnhuber5, M. von Hobe2, C. Voigt7, F. Weyland1, A. Zahn5