

EGU24-6548, updated on 10 May 2024 https://doi.org/10.5194/egusphere-egu24-6548 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Modeling suspended sediment concentration using artificial neural networks, an effort towards global sediment flux observations in rivers from space

Luisa Vieira Lucchese¹, Rangel Daroya², Travis Simmons³, Punwath Prum¹, Subhransu Maji², Tamlin Pavelsky⁴, Colin Gleason³, and John Gardner¹

¹Dept of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, United States of America (luisa.lucchese@pitt.edu)

²Department of Computing and Information Science, University of Massachusetts, Amherst, United States of America ³Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, United States of America ⁴Department of Earth and Marine Science, University of North Carolina, Chapel Hill, United States of America

Harmonized Landsat Sentinel-2 (HLS) provides high-quality images every 2-3 days across Earth. However, HLS has not been widely used to measure Suspended Sediment Concentration (SSC) in rivers. Here, we used HLS to generate a fully open-source, open-architecture, and scalable image processing workflow and Neural Network algorithm to estimate SSC in global rivers. The extracted HLS surface reflectance was joined with global in-situ SSC measurements and used to train an ensemble of Artificial Neural Networks (ANN). Two ANNs were developed: one trained based on the lower SSC values (up to 20.08 mg/L) and the other one trained based on higher SSC values (up to 403.43 mg/L). The ANNs were able to achieve satisfactory performances for a global SSC model, with a median absolute error of 5.10 mg/L, pairwise correlation of 0.457, absolute E90 of 46.85 mg/L and absolute E95 of 84.9 mg/L. The preprocessing module and the ANN models were optimized to have few dependencies and finish execution within a reasonable timeframe (the ANN models are executed in approximately 1 second per node). These characteristics make the model suitable for implementation on Amazon Web Services (AWS) cloud, where they are planned to automatically generate SSC data on-the-fly. We will combine the global SSC model with Surface Water and Ocean Topography (SWOT) discharge data to generate a self-updating, global sediment flux dataset to be made available in the National Aeronautics and Space Administration (NASA) PO.DAAC portal.