

EGU24-7633, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-7633 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Achieving net zero greenhouse gas emissions critical to limit climate tipping risks

Annika (Ernest) Högner^{1,2,3}, Tessa Möller^{3,4,5}, Carl-Friedrich Schleussner^{4,5,6}, Samuel Bien^{1,2,3}, Niklas H. Kitzmann^{1,3}, Robin D. Lamboll⁷, Joeri Rogelj^{5,7,8}, Jonathan F. Donges^{3,9,10}, Johan Rockström^{2,3,9}, and Nico Wunderling^{3,9,10}

¹Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany

²Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany

- ³Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany ⁴Climate Analytics, Berlin, Germany
- ⁵Energy, Climate and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria ⁶Geography Department & IRI THESys, Humboldt University of Berlin, Berlin, Germany

⁷Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK

⁸Centre for Environmental Policy, Imperial College London, London, UK

⁹Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

¹⁰High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA

Under current emission trajectories, at least temporarily overshooting the Paris global warming limit of 1.5 °C above pre-industrial levels is a distinct possibility. Permanently exceeding this limit would substantially increase the risks of triggering several climate tipping elements with associated high-end impacts on human societies and the Earth system. It is essential to assess this risk under emission pathways that temporarily overshoot 1.5 °C. Here, we investigate the tipping risks associated with a number of policyrelevant future emission scenarios, using a stylised Earth system model that comprises four interconnected core tipping elements. Assessing tipping risks in the year 2300, we find a non-linear increase for overshoots that exceed 1.8 °C peak temperature or persist above 1.5 °C beyond the end of the 21st century. Scenarios following current policies or pledges lead to high tipping risk of 30% (median) and more, with uncertainty from climate sensitivity and carbon-cycle feedbacks translating to large uncertainties in tipping risk (45% and more) for these scenarios. Further, we show that on multi-century timescales achieving and maintaining at least net-zero greenhouse gas emissions is paramount to minimise tipping risks. Our results underscore that stringent emission reductions in the current decade in line with the Paris Agreement 1.5 °C limit are critical for planetary stability.