

EGU24-8957, updated on 20 May 2024 https://doi.org/10.5194/egusphere-egu24-8957 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Drivers of intra seasonal δ^{13} C signal in tree rings of *Pinus sylvestris* as indicated by compound specific and laser ablation isotope analysis

Katja Rinne-Garmston¹, Yu Tang^{1,2}, Elina Sahlstedt¹, Bartosz Adamczyk¹, Matthias Saurer³, Yann Salmon^{2,4}, Maria del Rosario Domínguez Carrasco², Teemu Hölttä², Marco Lehmann³, Lan Mo¹, and Giles Young¹

¹Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Helsinki, Finland (katja.rinnegarmston@luke.fi)

²Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

³Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland ⁴Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland

Carbon isotope composition of tree \Box ring ($\delta^{13}C_{Ring}$) is a commonly used proxy for environmental change and ecophysiology. $\delta^{13}C_{Ring}$ reconstructions are based on a solid knowledge of isotope fractionations during formation of primary photosynthates ($\delta^{13}C_P$), such as sucrose. However, $\delta^{13}C_{Ring}$ is not merely a record of $\delta^{13}C_P$. Isotope fractionation processes, which are not yet fully understood, modify $\delta^{13}C_P$ during sucrose transport. We traced, how the environmental intra \Box seasonal $\delta^{13}C_P$ signal changes from leaves to phloem, tree \Box ring and roots, for 7 year old Pinus sylvestris, using $\delta^{13}C$ analysis of

individual carbohydrates, $\delta^{13}C_{Ring}$ laser ablation, leaf gas exchange and enzyme activity measurements. The intralseasonal $\delta^{13}C_P$ dynamics was clearly reflected by $\delta^{13}C_{Ring}$, suggesting negligible impact of reserve use on $\delta^{13}C_{Ring}$. However, $\delta^{13}C_P$ became increasingly ¹³Clenriched during downlstem transport, probably due to postlphotosynthetic fractionations such as sink organ catabolism. In contrast, $\delta^{13}C$ of waterlsoluble carbohydrates, analysed for the same extracts, did not reflect the same isotope dynamics and fractionations as $\delta^{13}C_P$, but recorded intralseasonal $\delta^{13}C_P$ variability. The impact of environmental signals on $\delta^{13}C_{Ring}$, and the 0.5 and 1.7‰ depletion in photosynthates compared ring organic matter and treelring cellulose, respectively, are useful pieces of information for studies exploiting $\delta^{13}C_{Ring}$.