Please note that this session was withdrawn and is no longer available in the respective programme. This withdrawal might have been the result of a merge with another session.
HS9.8 | Analysis and Prediction of Hydrological Induced Disasters in High Mountain Environment
Analysis and Prediction of Hydrological Induced Disasters in High Mountain Environment
Convener: Axel Bronstert | Co-conveners: Nadine Salzmann, Ankit AgarwalECSECS
Hydrological induced extremes such as droughts, floods and heavy-rain-triggered mass movements account for 45% of the fatalities and 74% of the economic losses caused by natural hazards. Mountainous areas owing to unique hydro-climatological, geological and topographical conditions, and partly seismic activity are particularly susceptible to hydrological induces disasters. Furthermore, climate change is affecting hydrological processes particularly in high mountain regions. Rising temperatures and changes in weather patterns likely elevate risks from hydrological hazards such as frequent or intensified periods of water scarcity and heat waves, riverine and flash floods and associated mass movements, or the occurrence of glacial lake outburst floods. Often these hydrological extremes transform into cascading hazards where an initial event causes a downstream chain reaction. Such extreme events induced hazards interfere with increasing population pressure and expansion of settlements along rivers and new infrastructure developments such as roads and hydropower projects.
The complexity of hydrological hazards and their underlying processes in mountainous landscape demand scientific efforts and approaches from multiple disciplines. The proposed session aims to compile recent research that analyses and predicts hydrological induced hazards and risks in the high mountainous region. We encourage research submissions from hydrological, hydrodynamic and hydro-sedimentological analysis and modelling, trends and patterns of extremes, analyzing past, present and future hazards and risks through innovative data-analysis, remote sensing, and risk assessment approaches. With the proposed session, we further target to elucidate options for improved risk management and mitigation in the future.