European Mineralogical Conference Vol. 1, EMC2012-233, 2012 European Mineralogical Conference 2012 © Author(s) 2012

Degassing kinetics of sulphur upon decompression in basaltic systems

L. Crede, A. Fiege, and H. Behrens

Leibniz Universität Hannover, Institut für Mineralogie, Germany (crede@gmx.net)

Understanding the sulphur-degassing processes of magmatic systems is of high importance to predict volcanic hazards. Various studies focussed on the fluid-melt partitioning of S at fluid-melt equilibrium [1]. By contrast, little is known about the kinetics of sulphur release upon decompression.

A three step procedure was utilized to study experimentally the degassing of sulphur-bearing fluids from alkali basaltic melts. First, anhydrous Mg-free alkali basalt was synthesized as starting material by melting an oxide and carbonate mixture at 1600°C in a PtRh crucible. In a second step, volatile-bearing glasses were synthesized in an internally heated gas pressure vessel (IHPV) at fluid-undersaturated conditions. For runs at 1050°C and 500 MPa the following components were loaded together with the Mg-free alkali basalt into Au capsules (\sim 3.5 cm length, Ø 5 to 6 mm, 2 mm wall thickness): S as gypsum (CaSO₄ 2 H₂O), Mg as brucite (Mg(OH)₂) and deionized H₂O. At synthesis temperature of 1150°C Au₈₀Pd₂₀-capsules were used and only gypsum and brucite were added to the capsules to avoid the formation of S-bearing fluids during heating which may cause corrosion of the capsule. The third step comprises isothermal decompression experiments with ~ 150 mg of the synthesized material loaded into Au- (1050°C) or Pt-capsules (1150°C). Platinum (at 1150°C) was used as capsule material, because it is more flexible and resistible upon pressure changes. The decompression experiments were conducted in an IHPV at log fO_2 of ~QFM+2 (QFM: quartz-fayalite-magnetite buffer). The experimental charges contained \sim 6.1 wt% H₂O and \sim 600 ppm S at 1050°C and 5.2 wt% H₂O and \sim 1320 ppm S at 1150°C. Pressure was released continuously from 400 MPa to 70 MPa at a decompression rate (r) of 0.1 MPa/s. The samples were either directly rapid quenched after decompression to preserve disequilibrium conditions or annealed (t_A) for 1 to 20 h to achieve (near-) equilibrium conditions. S was measured by EMP and H₂O by FTIR, and the partitioning of S between fluid and melt is described by $D_S^{fl/melt}$ = wt% S_{fluid} / wt% S_{melt} using mass balance calculations.

Direct quench at 1050°C yield $D_S^{fl/melt} = 56 \pm 14$. Subsequent annealing produced an initial increase of $D_S^{fl/melt}$ by ~46 % ($D_S^{fl/melt} = 82 \pm 25$) after 2 h followed by a decrease of ~41 %($D_S^{fl/melt} = 50 \pm 30$) after 20 h annealing. First data at 1150°C with t_A of ~1h and ~2h indicate that $D_S^{fl/melt}$ is decreasing with t_A and is higher by a factor of ~1.4 compared to experiments at 1050°C. Our results at (near-) equilibrium conditions (t_A > 2h) are comparable to earlier results of equilibrium experiments with basaltic compositions [2]. Additionally the higher $D_S^{fl/melt}$ values at disequilibrium conditions compared to (near-) equilibrium conditions indicate that the first fluid released from a fast decompressed magma may contain a larger S fraction than expected based on equilibrium experiments. To characterize the effects of varying r, t_A , temperature and volatile components (Cl) further experiments are planned.

[1] Webster & Botcharnikov (2011), Reviews in Mineralogy and Geochemistry 73, 247-283

[2] Lesne et al. (2011), Journal of Petrology 52, 1737-1762