

Solid-aqueous equilibrium in the BaSO₄-RaSO₄-H₂O system: first-principles calculations and a thermodynamic assessment

V. L. Vinograd (1,2), F. Brandt (2), K. Rozov (2), M. Klinkenberg (2), B. Winkler (1), and D. Bosbach (2)

(1) University of Frankfurt, Geosciences, Frankfurt a.M., Germany (v.vinograd@kristall.uni-frankfurt.de), (2) Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK 6)

Phase relations in the BaSO₄-RaSO₄-H₂O system are important for the understanding of the role of barite-type minerals in controlling concentrations of Ra²⁺ in ground waters. These relations are extremely sensitive to the degree of non-ideality of the solid solution phase, which commonly is expressed in terms of the regular mixing parameter, W_{BaRa} . The experimentally based W_{BaRa} values differ by up to one order of a magnitude. In this study W_{BaRa} is computed from first principles. The regular mixing parameter, W_{BaRa} , is interpreted as the slope of the enthalpy of mixing in the limit of infinite dilution ($x_{\text{Ra}} = 0$) and is calculated from the change in the enthalpy of a 2x2x2 supercell of BaSO₄ due to the insertion of a single substitutional defect of Ra. The method is validated by computing W values for a wider range of binary solid solutions with barite and aragonite structures. The predicted values agree with the available experimental data within the confidence limit of 30%. The W parameters computed for barite- and aragonite-type solid solutions correlate linearly with the square of the relative difference in the standard volumes of the end-members, $\delta = ((V_1 - V_2)/(V_1 + V_2))^2$. The linear regression equations are W (kJ/mol) = $(2260 \pm 150)\delta$ and W (kJ/mol) = $(1960 \pm 80)\delta$ for the barite and aragonite series, respectively. Our value ($W_{\text{BaRa}} = 2.2 \pm 0.70$ kJ/mol; $a_0 = 0.89 \pm 0.30$) falls within the range of the previous estimates of 0.9 kJ/mol [1] and 3.7-6.2 kJ/mol [2] obtained from solid – aqueous equilibrium data. The value of $a_0 = 0.89 \pm 0.30$ implies that the solid – aqueous equilibrium in the BaSO₄-RaSO₄-H₂O system has an alyotropic point in close proximity to the BaSO₄ end-member.

The calculations were performed at Jülich Supercomputing Centre.

[1] Zhu, Ch. (2004) Geochim. et Cosmochim. Acta, 68: 3327–3337

[2] Curti, E, Fujiwara K., Iijima K., et al. (2010) Geochim. et Cosmochim. Acta, 74: 3553–3570