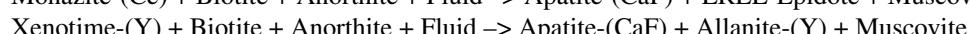
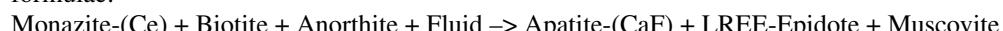


Fluid-induced breakdown of monazite-(Ce) and xenotime-(Y) and formation of fluorapatite-LREE-epidote and fluorapatite-allanite-(Y) coronas in the grusified Izera metagranites of the northern Bohemian Massif

B. Kajdas (1), J. Majka (2), and M. Michalik (1)



(1) Institute of Geological Sciences, Jagiellonian University, Kraków, Poland (bartłomiej.kajdas@uj.edu.pl), (2) Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Izera-Kowary Unit is located at the northern part of the Karkonosze-Izera massif (SW Poland). During investigation of partly grusified coarse-grained Izera granites (about 500Ma) collected in the Siedlęcin village, altered monazite-(Ce) and xenotime-(Y) were found.

Primary, igneous phosphates were probably altered during Variscan amphibolite facies metamorphic overprint. Monazite-(Ce) was partly substituted by apatite and LREE-bearing epidote coronas. Thorium, equally distributed in the primary monazite-(Ce) accumulates in coronas, forming cheralite halos. Alteration of primary xenotime-(Y) is similar, but instead of LREE-bearing epidote, allanite-(Y) is formed. External coronae composed of epidote, described commonly in other studies, is rather scarce.

The chondrite-normalized REE patterns for the primary (monazite-(Ce) and xenotime-(Y)) and secondary minerals (epidote, allanite-(Y), apatite-(CaF)) are similar. In apatite-(CaF), in which the amount of REE and Y is below 0.05 wt.%, REE patterns reflect the patterns observed in primary phosphates less accurately. In monazite grain, which contains xenotime inclusion, Y and HREE are irregularly distributed inside the whole monazite grain, and create brighter and darker areas in BSE image, what can indicate, that altered xenotime-(Y) were incorporated during alteration into surrounding monazite-(Ce).

Alteration of monazite-(Ce) and xenotime-(Y), in the presence of water-rich fluids, may be described by following formulae:

Such kind of reactions are usually connected with the activity of Ca-, F-, Al- and Si-rich fluids.

Presence of epidote (not only the REE-bearing epidote and allanite-(Y) described here) and low-Ca plagioclase (albite-oligoclase) indicate, that alteration of Izera granites could have been altered under the albite-epidote-amphibolite facies conditions, although granite samples do not show intense metamorphic deformation.