European Mineralogical Conference Vol. 1, EMC2012-50, 2012 European Mineralogical Conference 2012 © Author(s) 2012

Ionizing irradiation effects on the redox state of alkali silicate glasses.

M. Fialin (1) and C. Wagner (2)

(1) Camparis, UPMC Univ Paris 06, IPGP, CNRS-UMR 7094, F-75005, Paris, France (michel.fialin@upmc.fr), (2) UPMC, Univ Paris 06, CNRS-UMR 7193, F-75005, Paris, France (christiane.wagner_raffin@upmc.fr)

In silicate melt different iron species can be present, which implies variations in <Fe-O> distances and affects melt polymerization and, among other things, Fe oxidation state. Moreover, alkalis also modify the Fe structural role in melts [1]. Accurately measuring the Fe³⁺/ Σ Fe ratios in rock-forming minerals, specifically resolving intracrystalline variations in these ratios, is important in estimating geologically important variables (T, P, fO₂ and fH₂). For glasses, *in situ* measurements of the Fe³⁺/ Σ Fe ratios are essential to elucidate, for instance, the oxidation mechanisms related to diffusion of chemical species [2]-[3]. The electron microprobe (EMP), a standard analytical tool for the chemical characterization of minerals, allows *in situ* analyses of minerals in thin section with a spatial resolution on the order of a few micrometers. Nevertheless, conventional EPMA is not typically suited for determining the oxidation state of iron through measurements of the Fe³⁺/ Σ Fe ratios. We have thus proposed a method for determining Fe³⁺/ Σ Fe in minerals and glasses using this instrument, commonly denoted as 'the peak shift method'[4].

In this study we investigate changes in the oxidation state of iron that occur as the result of the Alk^+ electromigration in glasses upon electron irradiation with the EMP. We propose mechanisms for explaining the charge trapping processes under ionizing radiation as a function of iron content in the glasses. The Fe^{3+} reduction to Fe^{2+} classically occurs by electron transfer ($Fe^{3+} + e^- \rightarrow Fe^{2+}$). This occurs by 3d-orbital electron transfers from Fe^{2+} ions to Fe^{3+} ion for Fe^{3+} -rich glasses. The inward diffusion (to the bulk) of Alk^+s is correlated with the outward diffusion (to the surface) of electrons transferred from a Fe^{2+} site to a neighbouring Fe^{3+} site. This reduction process is somewhat different when iron is found at low amounts in glasses. In the latter case, Fe^{3+} is an efficient electron trap and its reduction to Fe^{2+} occurs by direct capture of a free electron. The Fe^{2+} oxidation is induced by the formation and the outward diffusion of O^{2-} interstitial ions produced at the sites of paired non bridging oxygens after the departure of the charge compensating Alk^+s . The accumulation of free oxygens beneath the surface makes Fe^{3+} -rich oxide phases to precipitate as separate nanometer sized particles. Outgassing of atomic oxygens as bubbles is also observed.

[1] R. Moretti & G. Ottonello, J. Non-Crystalline Solid (2003) 323, 111-119; [2] V. Magnien, D.R. Neuville, L. Cormier, B.O. Mysen, V. Briois, S. Belin, O. Pinet, P. Richet, Chem. Geol. (2004), 213, 253; [3] V. Magnien, D.R. Neuville, L. Cormier, J. Roux, J.L. Hazemann, O. Pinet, P. Richet (2006) J. Nucl. Mat. 352, 190; [4] M. Fialin, C. Wagner, N. Métrich, E. Humler, L. Galoisy, A.Bézos (2001) Am. Mineral. 86, 456.