

Variations in triple isotope fractionation exponents

A. Pack, N. Albrecht, M.E.G. Hofmann, E.M. Bultmann, B. Horvath, and A. Gehler

Universität Göttingen, Geowissenschaftliches Zentrum, Göttingen, Germany (apack@uni-goettingen.de)

Introduction: High-precision analyses of triple isotope ratios of coexisting phases (minerals, fluids, gases) allow the identification of the isotope fractionation effect [1]. Not considering true mass-independent effects, only a few studies, made use of triple isotope relations [e.g., 2, 3, 4]. Understanding complex triple isotope fractionation networks [5-7] requires knowledge of θ for each fractionation process. We present the first experimental triple oxygen isotope equilibrium fractionation exponents θ including water, solids and gaseous CO₂. First data on Si isotopes will also be presented.

Technique: Isotope analyses of oxides, silicates and phosphates are conducted by means of IR-laser fluorination in combination with GC-CF-irmMS (Thermo MAT 253). The precision in $\Delta^{17}\text{O}$ varies between ± 0.02 and $\pm 0.04 \text{ ‰}$ for a single analysis [8]. We use NBS-28 quartz ($\Delta^{17}\text{O}_{TFL} \equiv 0$) and a rocks- and minerals-defined reference line (TFL) with a slope of $\lambda_{TFL} = 0.5251$ and zero intercept when reporting $\Delta^{17}\text{O}$. For CO₂ we apply a novel the technique that includes equilibration with solid CeO₂ and subsequent analysis of CeO₂ by fluorination [8, 9] with an accuracy and precision of $\pm 0.03 \text{ ‰}$. For water, we have chosen literature data [e.g., 3, 4, 10] or had the water analyzed in the laboratory of A. Landais (Paris). Silicon isotopes have been measured on gaseous SiF₄ that was extracted by laser fluorination.

Results: We have experimentally determined the triple isotope fractionation factor $\theta = \ln(\alpha^{2/1}) / \ln(\alpha^{3/1})$ for oxygen for: (i) low-T oxygen isotope equilibrium fractionation between apatite and water with $\theta_{\text{apatite-water}} = 0.526 \pm 0.004$ (2σ) [6], (ii) low-T oxygen isotope equilibrium fractionation between CO₂ and water with $\theta_{\text{CO}_2\text{-water}} = 0.522 \pm 0.002$ (2σ , independent of T, $4 \leq T \leq 37 \text{ }^\circ\text{C}$ [8]), (iii) low-T oxygen isotope equilibration between silica and water with $\theta_{\text{silica-water}} = 0.518 - 0.521$. For silicon, we present first data on biogenic silica.

Discussion: We show that θ varies for different equilibria and those variations in θ are not solely due to kinetic isotope effects. For three low-T processes (apatite-water, CO₂-water, silica-water), θ is considerably lower than the high-T approximation of 0.5294 [1]. For the rocks- and minerals-defined TFL, slopes of $0.524 \leq \lambda_{TFL} \leq 0.526$ were reported [11-14]. Our data show that variations in λ_{TFL} can solely explained by variations in θ . The understanding of triple isotope fractionation processes requires knowledge of θ 's not only for kinetic, but also for each equilibrium fractionation process involved. Implications for the usability of triple isotope ratios for the identification of e.g. diagenesis will be discussed.

References: [1] Young, E.D., A. Galy, and H. Nagahara (2002) *Geochimica et Cosmochimica Acta*, **66**: p. 1095-1104. [2] Galy, A., et al. (2000) *Science*, **290**: p. 1751-1753. [3] Landais, A., et al. (2006) *Geochimica et Cosmochimica Acta*, **70**: p. 4105-4115. [4] Landais, A., E. Barkan, and B. Luz (2008) *Geophysical Research Letters*, **35**: p. L02709. [5] Hoag, K.J., et al. (2005) *Geophysical Research Letters*, **32**: p. L02802:1-5. [6] Pack, A., A. Gehler, and A. Süssenberger (2012) *Geochimica et Cosmochimica Acta*, **submitted**. [7] Horvath, B., M.E.G. Hofmann, and A. Pack (2012) *Geochimica et Cosmochimica Acta*, **submitted**. [8] Hofmann, M., B. Horváth, and A. Pack (2011) *Earth and Planetary Science Letters*, **319-320**: p. 159-164. [9] Hofmann, M.E.G. and A. Pack (2010) *Analytical Chemistry*, **82**: p. 4357-4361. [10] Barkan, E. and B. Luz (2011) *Rapid Communications in Mass Spectrometry*, **25**: p. 2367-2369. [11] Rumble, D., et al. (2007) *Geochimica et Cosmochimica Acta*, **71**: p. 3592-3600. [12] Pack, A., C. Toulouse, and R. Przybilla (2007) *Rapid Communications in Mass Spectrometry*, **21**: p. 3721-3728. [13] Miller, M.F. (2002) *Geochimica et Cosmochimica Acta*, **66**: p. 1881-2055. [14] Ahn, I., et al. (2012) *Geosciences Journal*, **16**: p. 7-16.