European Mineralogical Conference 2012

Synthesis, crystal chemistry and topology of $\mathrm{BaYb}_{6}\left(\mathrm{Si}_{2} \mathbf{O}_{7}\right)_{2}\left(\mathbf{S i}_{3} \mathbf{O}_{10}\right)$, the first silicate containing both $\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}$ and $\mathrm{Si}_{3} \mathrm{O}_{10}$ groups

M. Wierzbicka-Wieczorek (1) and U. Kolitsch (2)
(1) Institute for Geosciences, Department of Mineralogy, Friedrich-Schiller University Jena, Germany (maria.wierzbicka-wieczorek@uni-jena.de), (2) Department of Mineralogy and Petrography, Natural History Museum, Vienna, Austria (uwe.kolitsch@NHM-WIEN.AC.AT)

The novel compound $\mathrm{BaYb}_{6}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$, simplified $\mathrm{BaYb}_{6} \mathrm{Si}_{7} \mathrm{O}_{24}$, represents the first silicate containing both $\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}$ and $\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$ groups. It is also the first silicate that is isotypic with $\left(\mathrm{NH}_{4}\right) \mathrm{Cd}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$ (Ivanov et al., 1978; space group incorrectly given as P 11 m and also incorrectly adopted in the corresponding ICSD entry), the structure type of which is adopted by a small number of phosphates and arsenates with $\left(T_{2} \mathrm{O}_{7}\right)_{2}$ and $T_{3} \mathrm{O}_{10}$ groups ($T=\mathrm{P}$, As) (Bennazha et al., 2001, 2002; Ayed et al., 2004; Frigui et al., 2010). The title compound crystallised as a by-product from a high-temperature flux-growth experiment in air in the system Cs-$\mathrm{Ba}-\mathrm{Yb}-\mathrm{Co}-\mathrm{Si}-\mathrm{O}$ (molybdate-carbonate-based flux solvent; $T_{\max }=1150^{\circ} \mathrm{C}$, followed by cooling at $2 \mathrm{~K} / \mathrm{h}$ down to $750^{\circ} \mathrm{C}$) aimed at the synthesis of new mixed framework silicates containing heavy metals (e.g. $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Hg}$, $\mathrm{Cr}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Sb})$. The crystal structure of the new silicate was determined from single-crystal X-ray intensity data (MoK 293 K ; Nonius Kappa APEX II diffractometer). $\mathrm{BaYb}_{6}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$ is monoclinic, space group $P 2_{1} / m$, with $a=5.5173(11), b=27.260(6), c=6.8150(14) \AA, \beta=106.73(3)^{\circ}, V=981.6(3) \AA^{3} ; R(F)=2.50 \%$. The asymmetric unit of $\mathrm{BaYb}_{6}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$ contains one Ba , three Yb , four Si and thirteen O atoms. The architecture of the new silicate is characterised by one isolated, horseshoe-shaped $\mathrm{Si}_{3} \mathrm{O}_{10}$ group and two symmetrically equivalent $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups ($\mathrm{Si}_{3} \mathrm{O}_{10}: \mathrm{Si}_{2} \mathrm{O}_{7}$ ratio $=1: 2$). Edge-sharing YbO_{6} octahedra with the sequence $\mathrm{Yb} 1-\mathrm{Yb} 2-\mathrm{Yb} 3-\mathrm{Yb} 3-\mathrm{Yb} 2-\mathrm{Yb} 1$ form the backbone of zigzag chains, with a backbone length of $\sim 18 \AA$. The zigzag chains run approximately along [0-0.25-1] and [0 0.25-1] and are linked along the a-axis by sharing one further edge with an YbO_{6} octahedra from an adjacent chain.

Three structurally related silicates [isotypic $\mathrm{BaY}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$, $\mathrm{SrYb}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$ and $\mathrm{SrSc}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)\left(\mathrm{Si}_{3} \mathrm{O}_{10}\right)$; Wierzbicka-Wieczorek 2008] with similar zigzag chains are characterised by a $\mathrm{Si}_{3} \mathrm{O}_{10}: \mathrm{Si}_{2} \mathrm{O}_{7}$ ratio of $1: 1$ and the length of the chain backbone amounts to only $\sim 13 \AA$. The eight-coordinated Ba atom is located in [100] channels of the framework. The average $\mathrm{Ba}-\mathrm{O}$ bond length is $2.90 \AA$ and the average $\mathrm{Yb}-\mathrm{O}$ bond length in each of the three YbO_{6} octahedra measures $2.24 \AA$. The $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ angle in the horseshoe-shaped $\mathrm{Si}_{3} \mathrm{O}_{10}$ unit is 93.5° and the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle is $135.5^{\circ}(2 \mathrm{x})$, whereas the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle of the $\mathrm{Si}_{2} \mathrm{O}_{7}$ group is 165.3°.

References

Ayed, B., Abbdallah, A.H., Hadded, A. (2004): $\mathrm{RbMn}_{6}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$: a new manganese(II) arsenate. Acta Crystallogr., E60, i52-i54.

Ivanov, Yu.A., Simonov, M.A., Belov, N.V. (1978): Crystal structure of the cadmium ammonium phosphate $\left(\mathrm{NH}_{4}\right) \mathrm{Cd}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$ with mixed anion radical. Dokl. Akad. Nauk SSSR, 242, 599-602.

Bennazha, J., El Maadi, A., Boukhari, A., Holt, E.M. (2001): Identification of a new family of phosphate compounds, $\mathrm{A}^{I} \mathrm{~B}_{6}^{I I}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$: structures of $\mathrm{KMn}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$ and $\mathrm{AgMn}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$. Solid State Sci., 3, 587-592.

Bennazha, J., El Maadi, A., Boukhari, A., Holt, E.M. (2002): $\mathrm{NaMn}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$ and $\mathrm{KCd}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)$. Acta Crystallogr., C58, i76-i78.

Frigui, W., Falah, C., Boughzala, H., Zid, M.F., Driss, A. (2010): Synthèse et étude physico-chimique du matériau $\mathrm{KMn}_{6}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$. Journal de la Société Chimique de Tunisie, 12, 179-188.

Wierzbicka-Wieczorek, M. (2008) Syntheses, crystal structures and crystal chemistry of new mixed-framework silicates and a new molybdate structure type. Ph.D. Thesis, University of Vienna, 186 pp.

