

On temporal spectra of scintillometers

J.G. Evans (1) and H.A.R. de Bruin (2)

(1) Centre for Ecology & Hydrology, Wallingford, OX10 8BB United Kingdom (jge@ceh.ac.uk), (2) Independent Scientist

Clifford (1971) derived expressions for the real and imaginary part of the temporal spectra $W(f)$ for spherical waves propagating through the atmosphere. To a good approximation, the transmitter of a Millimeter-Wave Scintillometer (MWS) can be regarded as a point source and thus Clifford's theory is applicable to a MWS. Nieven et al. (1998) extended Clifford's theory to large aperture scintillometers (LAS). In both cases a so called corner frequency, f_c , can be defined. For frequencies smaller than f_c , the real part of $W(f)$ is approximately constant at $W_{plateau}$, whereas for $f > f_c$, the real part of $W(f)$ is proportional to $f^{-8/3}$ for the MWS. It is noted that $W_{plateau}$ is inversely proportional to the cross wind u_c and that f_c is proportional to u_c , therefore the integral of $W(f)$ over all f is independent of u_c ; however, this applies for the case where the cross wind does not vary along the path. During a field experiment carried out in mid-summer 2006 at Sheepdrove Organic Farm, UK, over mixed agricultural land use and complex topography, $W(f)$ was measured by a 94 GHz MWS. There were contrasting cool-windy and hot-convective weather conditions during the experiment. With these data the Clifford theory will be validated.