

LETKF for the nonhydrostatic model COSMO-DE

H. Reich, A. Rhodin, and C. Schraff
DWD, Offenbach, Germany (hendrik.reich@dwd.de)

LETKF for the nonhydrostatic model COSMO-DE

Hendrik Reich, Andreas Rhodin, Christoph Schraff

Deutscher Wetterdienst (DWD), Frankfurter Strasse 135, 63067 Offenbach,
Germany, hendrik.reich@dwd.de

We report on first experiments with the Local Ensemble Transform Kalman Filter (LETKF) for the nonhydrostatic COSMO-DE model of DWD.

The LETKF (Hunt et al., 2007) offers some very attractive features: it is a simple algorithm, no tangent linear and adjoint versions of the prognostic model are required, and the forecast error covariance matrix is cycled and thus flow-dependent.

Experiments with deterministic as well as with ensemble boundary conditions (BC) were performed. In the case with ensemble BCs we find an increased level of noise (as measured by the surface pressure tendency) in the LETKF analysis. The level of noise could be reduced by applying hydrostatic balancing to the analysis increments.

Looking at the rmse/spread ratio of the first guess, we find the ensemble to be underdispersive in both types of experiments, and adaptive algorithms to increase the ensemble spread are tested.