EMS Annual Meeting Abstracts Vol. 9, EMS2012-417, 2012 12th EMS / 9th ECAC © Author(s) 2012

A fresh view on the concept of boundary-layer depth and the Monin-Obukhov similarity theory

S. Zilitinkevich (1,2,3)

(1) Finnish Meteorological Institute, Helsinki, Finland, sergej.zilitinkevich@fmi.fi , (2) Division of Atmospheric Sciences, University of Helsinki, Finland, (3) Department of Radio Physics, N.I. Lobachevski State University of Nizhniy Novgorod, Russia

The energy- and flux-budget turbulence closure theory (Zilitinkevich et al, 2007, 2008, 2009, 2012) has disclosed quite sharp transition between the strong-turbulence regimes typical of boundary-layer flows and the newly discovered weak-turbulence regime, typical of the free flows and characterised by dramatic suppression of the heat transfer compared to momentum transfer. This finding suggests a very natural definition of the outer boundary of planetary boundary layers as the strong-to-weak turbulence transition level (obviously applicable to practically all types of atmospheric and hydrosphere boundary layers and suitable all over the globe including equatorial regions). Furthermore, the energy- and flux-budget closure suggests essential revision of the Monin-Obukhov similarity theory for the stably-stratified boundary layers and allows for is modification for the steady-state, stably-stratified geophysical flows in the free atmosphere or deep ocean. These developments call for comprehensive empirical verification and open new prospects for modelling applications.

References

Zilitinkevich, S.S., Elperin, T., Kleeorin, N., and Rogachevskii, I., 2007: Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes. *Boundary-Layer Meteorol*. **125**, 167-192.

Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I., Mauritsen, T., and Miles, M. W., 2008: Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. *Quart. J. Roy. Met. Soc.* **134**, 793-799.

Zilitinkevich, S.S., Elperin, T., Kleeorin, N., L'vov, V., and Rogachevskii, I., 2009: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves. *Boundary-Layer Meteorol.* **133**, 139-164.

Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I.N., 2012: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. *Boundary-Layer Meteorol*. (in press)