

Evaluation and uncertainty assessment of precipitation in UERRA regional re-analyses: First results for the Alpine Region and Fennoscandia

Francesco Isotta (1), Cristian Lussana (2), Barbara Casati (3), Christoph Frei (1), and Ole Einar Tveito (2)

(1) Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland, (2) Norwegian Meteorological Institute, Oslo, Norway, (3) Meteorological Research Division, Environment and Climate Change Canada, Dorval (QC), Canada

In the last years, research effort has further developed regional deterministic and probabilistic (ensemble) re-analyses with the ambition to derive high-resolution multi-variate climate datasets useful for environmental applications. In UERRA, a FP7 research project of the EU, several regional deterministic and ensemble re-analyses, as well as downscaling procedures based on these re-analyses, are calculated over several decades (30-50 years). An important prerequisite for the appropriate use of these datasets is a quantification of uncertainties and the assessment of their impacts in potential applications.

The aim of the present study is to evaluate daily precipitation data from the new regional re-analyses of UERRA in two topographically complex sub-regions of Europe, namely the European Alps and Fennoscandia. Our focus is on aspects of re-analysis uncertainty that may be relevant for hydrological applications, notably the dependence on spatial scale. The evaluation is based on a comparison against spatial analyses from high-resolution rain-gauge networks. The Alpine rain-gauge dataset, covers territories of seven countries and encompasses more than 5300 daily rain-gauge observations on average. In Fennoscandia, we focus on Norway, Sweden and Finland where a dataset of approximately 2000 daily rain-gauge observations is available. Scale dependence of the uncertainty/accuracy is examined in our analyses by considering (nested) hydrological catchments of variable size and by decomposing precipitation fields into (orthogonal) wavelets of variable scale.

A difficulty for an unbiased evaluation of re-analyses is that reference datasets themselves are subject to uncertainties, the magnitude of which may be significant at the resolution of modern re-analyses and, hence, could affect a scale-dependent evaluation. This difficulty is addressed in the Alpine section of our analysis by introducing a new probabilistic rain-gauge dataset which explicitly quantifies uncertainties by ensembles.

We introduce the concepts and show preliminary results of the evaluation of deterministic (HARMONIE re-analysis produced at SMHI) and probabilistic (re-analysis of the UK Met Office and Ensemble-Nudging data assimilation re-analysis of University of Bonn) re-analyses as well as downscaling (MESCAN - MeteoFrance) datasets against grids and ensemble area-mean precipitation.