CONSISTENT BIAS CORRECTION / DOWNSCALING OF DIFFERENT CLIMATE VARIABLES

Léonard Dekens¹, Mathilde Grandjacques², <u>Sylvie Parey</u>¹, Didier Dacunha-Castelle² 1 EDF R&D, Chatou, France 2 Orsay University, PARIS 11

EUROPEAN CLIMATIC ENERGY MIXES

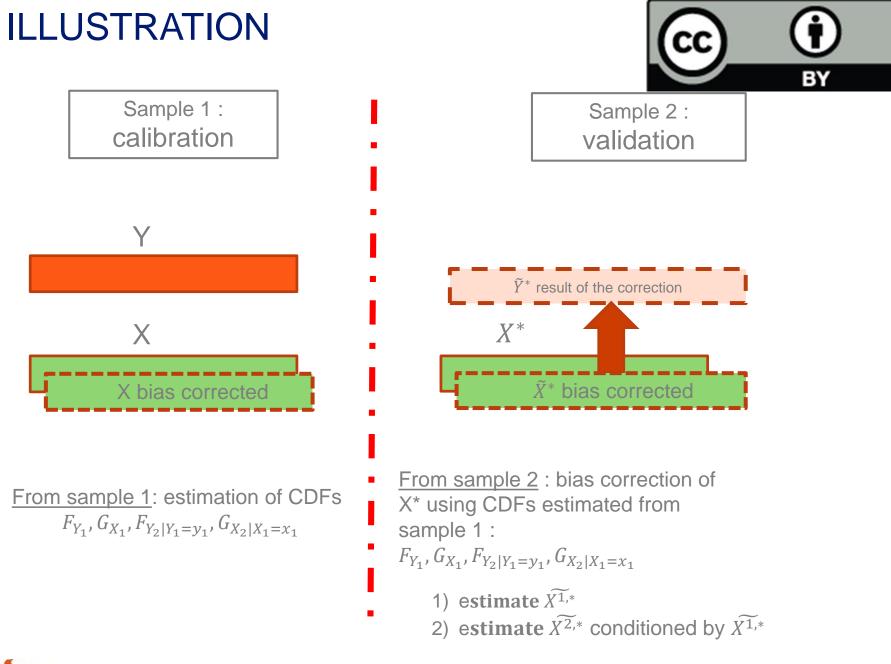
A Copernicus Sectoral Information System

PROPOSED METHODOLOGY

- Generalization of quantile mapping approaches
 - Distribution correction
 - Multivariate distributions

Principle

□ $X = (X_1, X_2)$ large scale data $Y = (Y_1, Y_2)$ local observations □ Correction => X distribution = Y distribution


Mathematical background

Rosenblatt theorem

$$\begin{array}{l} \bullet \ \mbox{$Z=T_{\chi}(X)$} \\ \begin{cases} z^{(1)} = G_{X^{(1)}}(x^{(1)}) \\ z^{(2)} = G_{X^{(2)}|X^{(1)}=x^{(1)}}(x^{(2)}) \\ \dots \\ z^{(p)} = G_{X^{(p)}|X^{(1)}=x^{(1)},\dots,X^{(p-1)}=x^{(p-1)}}(x^{(p)}) \end{cases} \end{array}$$

• Z uniform and independent marginal distributions

□ Consequence: ∃ T_{X,Y} allowing to match X distribution with Y distribution EMS 2016, Trieste | 09/2016 | 3

DIFFERENT TESTS

Notations

□ X large scale, Y local obs., ^ estimated, ~ bias corrected/downscaled, * validation period

Univariate bias correction

• Quantile matching $\widetilde{x}_t^* = \widehat{F}_Y^{-1}(\widehat{G}_X(x_t^*))$ (Hyp: X distribution $\approx X^*$ distribution)

$$\Box \text{ CDFt: } \mathsf{T}(\mathsf{G}_{\mathsf{X}}(\mathsf{z})) = \mathsf{F}_{\mathsf{Y}}(\mathsf{z}) \text{ and } \mathsf{T}(\mathsf{G}_{\mathsf{X}^*}) = \mathsf{F}_{\mathsf{Y}^*} \text{ so } \mathsf{T}(\mathsf{u}) = \mathsf{F}_{\mathsf{Y}}(\mathsf{G}_{\mathsf{X}}^{-1}(\mathsf{u})) \text{ and } F_{Y^*} = F_Y \circ G_X^{-1} \circ G_{X^*}$$
$$\widetilde{x^*}_t = \hat{F}_{Y^*}^{-1}(\hat{G}_{X^*}(x_t^*)) = \hat{G}_{X^*}^{-1}(\hat{G}_X(\hat{F}_Y^{-1}(\hat{G}_{X^*}(x_t^*))))$$

(Hyp: X and X* distribution not necessarily \approx ; $T_{Y,Y^*} \approx T_{X,X^*} => X$ and Y similar distributions)

Bivariate correction

- Classes on 1st variable
 - Optimal class length?
 - Generalization to more than 2 variables?

□ Kernel density estimation: ∃ R codes allowing the selection of optimal parameter

Applied month by month

DATA

Variables

- Daily means
- 10m wind speed and 2m temperature

Observations

Temperature: E-OBS
Wind speed: HadISD database

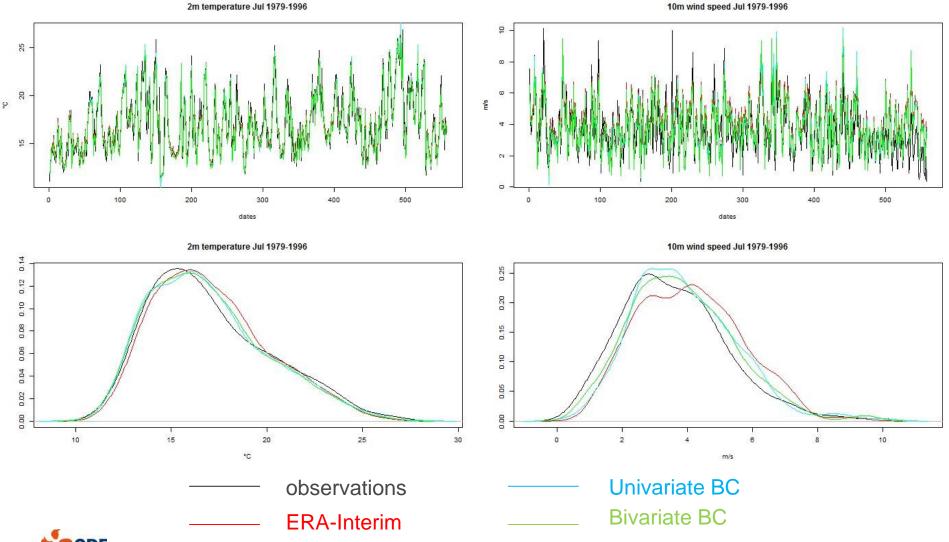
Large scale

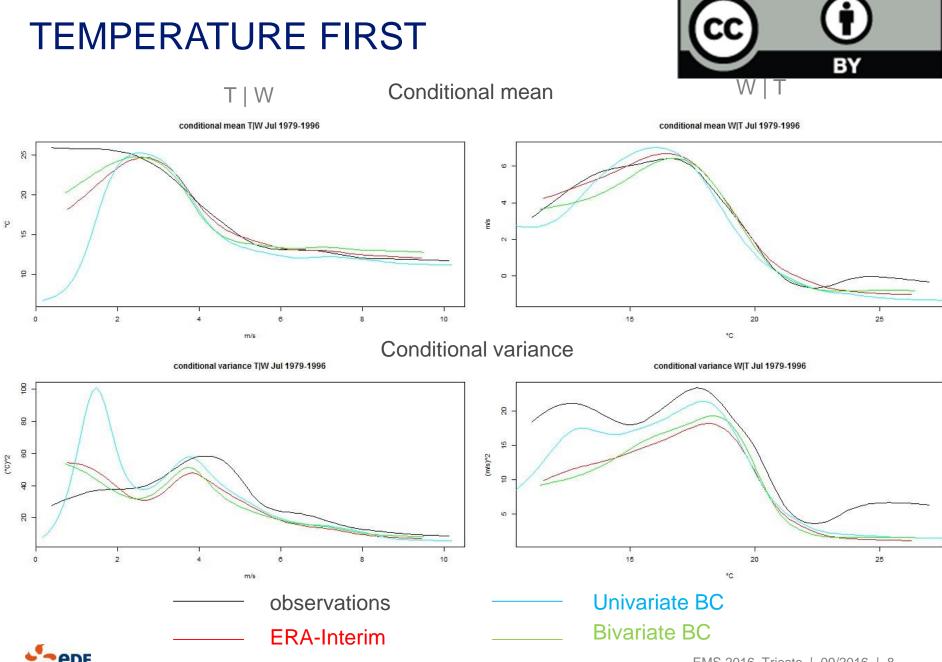
□ ERA-Interim 0.5°

Period

- □ Total: 1979-2014
- Calibration: 1997-2014

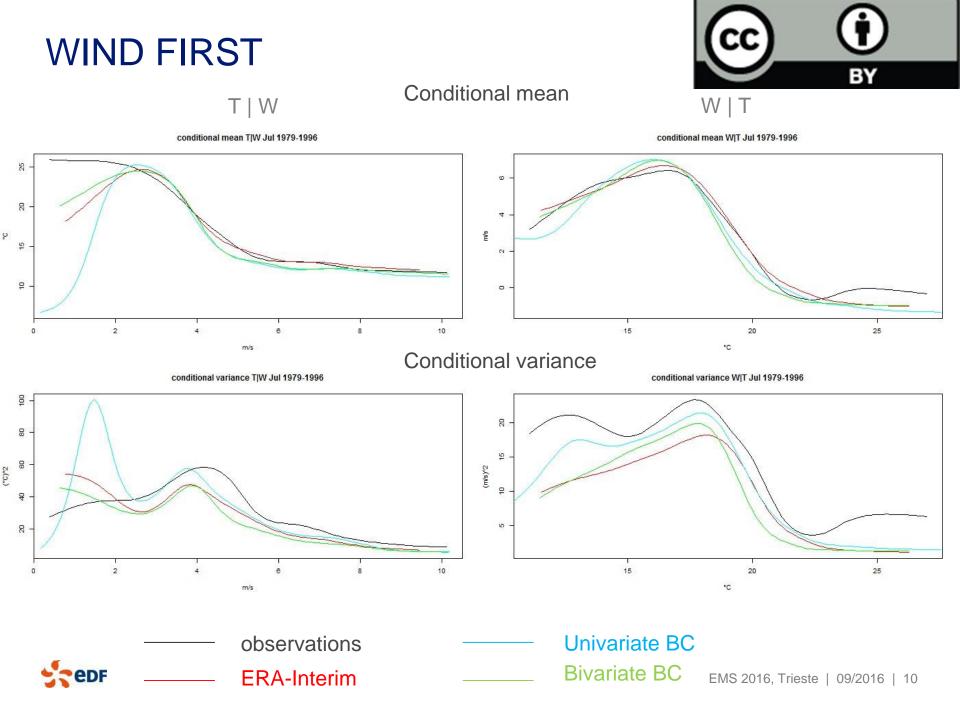
Validation: 1979-1996


• 2 locations: Hamburg, Paris-Orly



TEMPERATURE FIRST

EMS 2016, Trieste | 09/2016 | 7


WIND FIRST

2m temperature Jul 1979-1996

9 25 00 °C . ŝ m's ÷ 15 N 0 100 200 300 400 500 0 100 200 300 400 500 0 dates dates 2m temperature Jul 1979-1996 10m wind speed Jul 1979-1996 0.14 0.25 0.12 0.20 0.10 0.08 0.15 0.06 0.10 0.04 0.05 0.02 0.00 00.00 10 15 20 25 2 10 30 8 0 4 6 °C m/s observations **Univariate BC Bivariate BC ERA-Interim edf** EMS 2016, Trieste | 09/2016 | 9

10m wind speed Jul 1979-1996

BIVARIATE DISTRIBUTIONS: CDFt

L1 norm between the bivariate distributions

month	Without correction	Univariate correction	Bivariate correction	
			Temperature 1	Wind 1
January	0.0154	0.0122	0.0120	0.0254
February	0.0143	0.0171	0.0171	0.0201
March	0.0128	0.0125	0.0127	0.0102
April	0.0199	0.0166	0.0179	0.0163
May	0.0149	0.0156	0.0145	0.0165
June	0.0239	0.0111	0.0098	0.0126
July	0.0370	0.0220	0.0162	0.0230
August	0.0400	0.0180	0.0161	0.0137
September	0.0472	0.0209	0.0193	0.0176
October	0.0433	0.0164	0.0161	0.0161
November	0.0260	0.0133	0.0113	0.0212
December	0.0192	0.0142	0.0131	0.0316

BIVARIATE DISTRIBUTIONS: QUANTILE MATCHING

L1 norm between the bivariate distributions

month	Without correction	Univariate correction	Bivariate correction	
			Temperature 1	Wind 1
January	0.0155	0.0122	0.0101	0.0127
February	0.0144	0.0181	0.0131	0.0178
March	0.0130	0.0111	0.0108	0.0110
April	0.0206	0.0212	0.0197	0.0186
May	0.0150	0.0174	0.0165	0.0167
June	0.0231	0.0101	0.0129	0.0111
July	0.0385	0.0212	0.0196	0.0225
August	0.0395	0.0222	0.0203	0.0173
September	0.0487	0.0188	0.0184	0.0159
October	0.0433	0.0191	0.0151	0.0144
November	0.0252	0.0133	0.0102	0.0111
December	0.0190	0.0165	0.0147	0.0210

BY

DISCUSSION

Bivariate bias correction

- Generally better than univariate correction
- □ In this case, quantile matching better than CDFt
- Temperature first seems better

Future work

- □ Is it worth doing it?
- Design a toy model allowing the control of
 - Variable correlation
 - Differences between large scale representation and local observations
- Adapt Kernel density to extremes behavior?

Extension to > 2 variables

Possible, optimal Kernel density parameter identification not necessarily available

Thank you