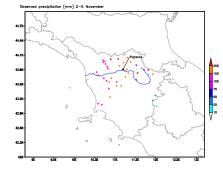
Florence 1966: how far ahead can we predict such extreme events with current, state-of-the-art ensembles?

V Capecchi⁽¹⁾, B Gozzini⁽¹⁾, S Lang⁽²⁾, R Buizza⁽²⁾

(1) LaMMA, (2) ECMWF

EMS Annual Meeting, Sep 2016



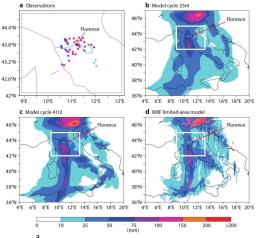
2-5 Nov 1966 large scale system over central/north Italy:

- low over Ligurian Sea
- warm and moist air south-to-north
- 'block' over the Balkans

Arno river flooded Florence

Observed precipitation 2-5 Nov in the Arno river basin (avg $\simeq 120 mm$)

1966-2016: 50th anniversary of the Arno River flooding Aim of the work: *evaluate the forecasting skills of the current (ie 2016) global and limited-area NWP models with an ensemble approach*

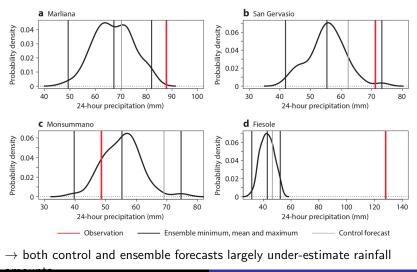

	Area	Resolution	Members	Initial conditions	Boundary conditions
ECMWF-ENS	Global	ECMWF TCo639L91 ¹ (18 km, 91 levels)	51	ECMWF TL511L60 (40 km, 60 levels)	N/A
WRF-ENS	Limited area	3 km, 60 levels ²	50	ENS	ENS

²Convection-permitting

Operational at ECMWF since March 2016

Short-range global forecasts

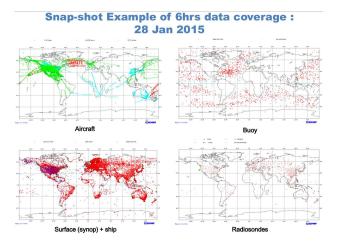
Precipitation on 4 Nov: single deterministic forecast at t_0 +24 h (init: 00 UTC 4 Nov)


(a) Observations,

- (**b**) ECMWF model cycle 23r4 (2006)^{*a*},
- (c) ECMWF model cycle
- 41r2 (2016),
- (d) WRF model (2016)

^aMalguzzi et al. "The 1966 century flood in Italy: A meteorological and hydrological revisitation." JGR (2006)

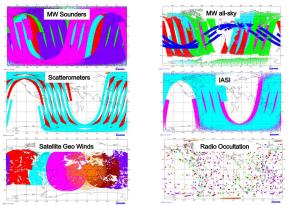
Short-range global forecasts


Precipitation on 4 Nov: ensemble forecast distributions at selected locations at t_0+24 h (init: 00 UTC 4 Nov)

V Capecchi, B Gozzini, S Lang, R Buizza Florence '66 ensemble re-forecasting

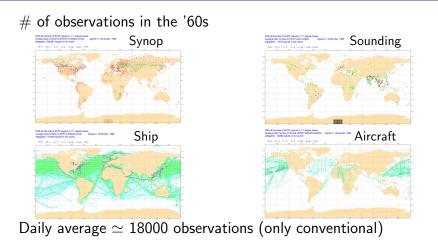
Limitation of the study: observations available to initialise the forecasts

of observations in 2015



From ECMWF Training Course (Apr 2016)

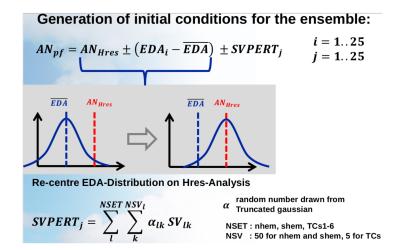
Limitation of the study: observations available to initialise the forecasts


of observations in 2015

Example of 6hr satellite data coverage: 28 Jan 2015

Every 12 hours $\simeq 7\times 10^7$ observations (both conventional and remote sensed) are assimilated in global models

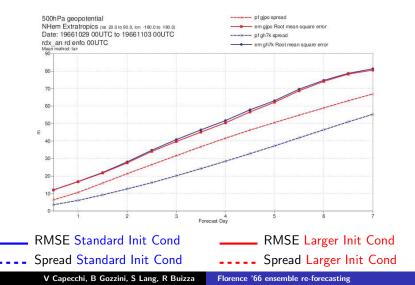
Limitation of the study: observations available to initialise the forecasts



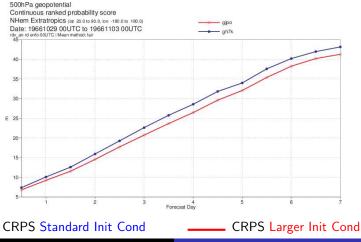
"poor-data scenario"

of obs in 2016 $O(10^7) >> \#$ of obs in 1966 $O(10^4)$

V Capecchi, B Gozzini, S Lang, R Buizza Florence '66 ensemble re-forecasting


Larger initial condition perturbation amplitude

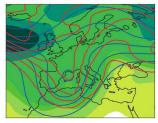
Courtesy of S Lang (ECMWF)


Larger initial condition perturbation amplitude

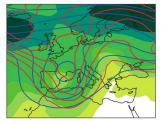
RMSE & spread 500 hPa geopotential Northern Hemisphere

Larger initial condition perturbation amplitude

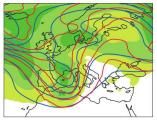
Continuous Ranked Probability Score 500 hPa geopotential Northern Hemisphere


V Capecchi, B Gozzini, S Lang, R Buizza

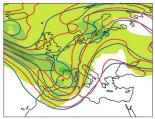
Florence '66 ensemble re-forecasting


Short-to-medium-range global forecasts

500 hPa Ensemble Mean & Spread geopotential height

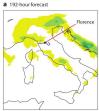

a 174-hour forecast

b 126-hour forecast



C 78-hour forecast

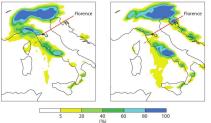
V Capecchi, B Gozzini, S Lang, R Buizza

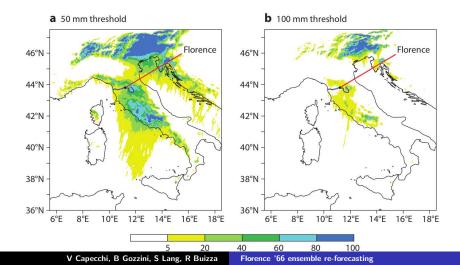

d 54-hour forecast

Florence '66 ensemble re-forecasting

Short-to-medium-range global forecasts

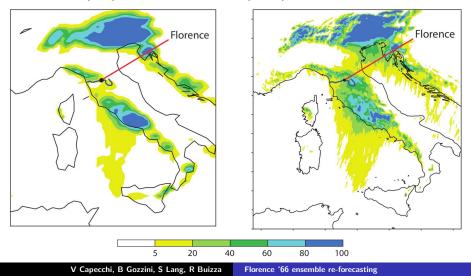
Probability of Precipitation exceeding 50 mm at (a) t_0 +192 h, (b) t_0 +144 h, (c) t_0 +96 h, (d) t_0 +72 h





V Capecchi, B Gozzini, S Lang, R Buizza

Florence '66 ensemble re-forecasting


Short-range LAM convection-permitting forecasts

Probability of Precipitation exceeding (a) 50 mm and (b) 100 mm at t_0+72 h forecast

Short-range global forecast vs Short-range LAM forecasts

Probability of Precipitation exceeding 50 mm for global forecast (left) and LAM forecast (right) at t_0+72 h forecast

Question

Florence 1966: how far ahead can we predict such extreme events with current, state-of-the-art ensembles?

Answers

- Single deterministic global forecasts have limited skill at t_0+24 h
- Ensembles global forecasts:
 - Provide valuable information on the synoptic conditions associated with potential severe weather up to three days in advance
 - $\circ \ t_0+24 < t < t_0+72$ provide probabilities that extreme weather can occur
- The poor number of obs available affects the reliability
- At t₀+168 h improvements in accuracy are achieved when ensemble initial perturbations are properly set
- Nested convection-permitting LAM ensemble forecasts (at 3 km) provide even more valuable information up to t₀+72 hours