TRENDS AND VARIABILITY OF PRECIPITATION EXTREMES IN SARDINIA ISLAND, 1951-2000: RESULTS DEPENDENCE ON THE NETWORK DENSITY.

Paolo Boi
ARPAS SARDEGNA DIPARTIMENTO METEOCLIMATICO, Viale Porto Torres 119-07100 Sassari ARPAS (pboi@arna sardeana)
\qquad

NETWORK DENSITY AND DATA
Regione Sardegna network: between 250 and 300 stations (from 1951 to 2000). The station mean distance is about 10km

One annual series network (Fig1).

hetwork (Fig1). 50 Fig2 the November series)

COMPARISON BETWEEN SERIES

The maximum value is about $550 \mathrm{~mm} /$ day in October 1951. Two values of $450 \mathrm{~mm} /$ day were recorded on November 1993 and September 1971.
Fig3 represents the 12 monthly and the annual series. The elements for annual series (the last one on the right side) are higher or equal than monthly ones, as expected. Median and quartiles for October, November and of convective type and more intense than the other seasons.
Rank sum test (WILKOXON-MANN-WHITNEY) has been applied to compare the monthly series (Tab. I). At a Rank sum test ((wILKOXON-MAN-WHITNEY) has been applied to compare the monthly series (Tab. I). At
5% significance level October, November and December series elements are higher than the other ones.

TREND TEST AND MOBILE WINDOW TEST

The Mann-Kendall trend test has been applied to monthly and yearly series (Tab. II). At a 5% level only March The Mann-Kendall trend test has been applied to monthly and yearly series (Tab. II). At a 5% level
(decreasing) and July (increasing) series present significant results. At a 10% level also February (decreasing) can be included.
The comparison of 1951-1975 and 1976-2000 periods by Wilkoxon-Mann-Whitney test presents no significantly
differences except for March series. differences except for March series.
Decact has significantly higher valunn-Whitney test applied to yearly series (Tab. III) indicates that the decad values.

EFFECTS OF NETWORK DENSITY ON THE SERIES
A special attention has been devoted to the network density effects: in a lower resolution network many extrem events of convective type are not intercepted, as the convective cells size is a few km .
The dependence of the previous results on the network density has been investigated. A second set of data has been selected by eliminating about 20% of stations in a uniform way, so the station mean distance raises to
about 12 km (Fig. 6). A third set of data has been obtained by eliminating about 80% of stations, so the station about 12 km (Fig. 6). A third set of data has been obtained by eliminating about 80% of stations, so the station
mean distance is 20 km . Fig 7 represent median, quartiles, maxima and minima obtained by the three data set mean distance irch km . Fig represent median, quarties, maxima and minima obtained by the three data set
for January, March, July, September, October, November and annual series. The continous line for the median show very little differences between the original and the second data set series, while the median for the third datat set is lower than the other two. The same holds for quartiles. This is verified in a quantitative way. Comparison between the original data set series and the second one by Wilkoxon-Mann-Whitney test shows the stations mean distance is about 20 km , many convective intense events are not intercepted by the network.

> EFFECTS OF NETWORK DENSITY ON THE TRENDS

Trend test for the second and the third data set series are also made (TabiV). Results for the original and the second data set are very similar. On the contrary for the third data set their are very differents. In particular for July series the third data set shows no more significant trend. For yearly series results drops from 49% with the original series to 7.3% for the third data set series.

Comparison of 1951-1975 and 1976-2000 periods by Wilkoxon-Mann-Whitney test produces very differen results by using the third data set, respect to the original one. In particular for the annual series
data set is 16%, while for third data set it is 3.6% (1976-2000 period values significantly lower)

ANNUAL AND MONTHLY SERIES. COMPARISON BETWEEN THE SERIES

Fig1. Yearty series series of annual

Fig2. November series
Month

RANK SUM TEST
(WILKOXON-MANN (WLLKOXON
WHITNEY)

Tab. : : Comparison between monthly series.

TREND TEST (MANN-KENDALL)

Compl	set (280	220 sta	Only 60 stat.
JAN	31\% +	31\% +	24\% -
MAR	0.7\%	2.2\% -	0.3\%
JUL	3.3\% +	3.9\% +	11.5\% +
SEP	19\% +	21\% +	41\% +
OCT	29\% -	28\% -	40\% -
Nov	35\% +	$39 \%+$	42\% -
YEAR	Y 49\%	38\%	7.3\%

In July series with only 60 stations trend is no more significant. Also yearly result is complete different.

