

Evaluation of thermal comfort conditions in Moscow region for 1981-2014 period with high spatial and temporal resolution.

Pavel Konstantinov (1), Mikhail Varentsov (1,3), Natalia Shartova (2), Olga Gommersstadt (4), and Diana Tattimbetova (1)

(1) Lomonosov Moscow State University, Faculty of Geography, Department of Meteorology and climatology, Moscow, Russian Federation (info@geogr.msu.ru) , (2) Lomonosov Moscow State University, Faculty of Geography, Department of Biogeography, Moscow, Russian Federation (info@geogr.msu.ru), (3) A.M. Obukhov Institute of Atmospheric Physics of RAS, Moscow, Russian Federation , (4) Lomonosov Moscow State University, Faculty of Geography, Department of Environmental Management, Moscow, Russian Federation (info@geogr.msu.ru)

The main goal of this investigation is deep analysis of spatial and temporal characteristics of PET (physiological equivalent temperature) for different parts of Moscow region (Russia) as megacity and its suburbs where was recorded the strongest heat wave (2010) in Eastern Europe.

This study is based on “urban reanalysis strategy” – created in 2015-2017 database of meteorological and radiation fields under Moscow megalopolis for period 1981-2014 with high spatial resolution. Main meteorological fields for Moscow region were reproduced with COSMO_CLM regional model (including urban parameters) with horizontal resolution 1x1 km. Time resolution of output fields is 1 hour.

Also SVF (Sky View Factor) was calculated for obtaining losses of UV radiation in complex urban conditions. Usually, the raster-based SVF analysis the shadow-casting algorithm proposed by Richens (1997) is popular (see Ratti and Richens 2004, Gal et al. 2008, for example). Output radiation field includes UV-radiation with horizontal resolution 1x1 km.

PET index is calculated using RayMan model (Matzarakis et al, 2007). This model calculates the radiation temperature, average radiation fluxes and biometeorological indices (PET, PMV, SET) at a particular point at a particular time.

The reported study was partially supported by RFBR (Russian Foundation for Basic Research), research project No. 15-35-70006, and 13-05-41306-RGO_a.

References:

1. Gal, T., Lindberg, F., and Unger, J., 2008. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. *Theoretical and applied climatology*, 95 (1-2), 111–123.
2. Matzarakis A., Amelung B., Blažejczyk K. Climate Change and Tourism – Assessment and Coping Strategies, 2007.
3. Richens, P., 1997. Image processing for urban scale environmental modelling. In: J.D. Spitler and J.L.M. Hensen, eds. th International IBPSA Conference Building Simulation, Prague.
4. Ratti, C. and Richens, P., 2004. Raster analysis of urban form. *Environment and Planning B: Planning and Design*, 31 (2), 297–309