

Services to protect cultural heritage against climate change: the STORM project

Rosmarie de Wit (1), Mohammad Ravankhah (2), Maja Žuvela-Aloise (1), Jörn Birkmann (2), Charalampos Patrikakis (3), Vanni Resta (4), and Silvia Boi (5)

(1) Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria (rosmarie.dewit@zamg.ac.at), (2) Institute of Spatial and Regional Planning, University of Stuttgart, Stuttgart, Germany, (3) University of West Attica, Athens, Greece, (4) KPeople Ltd, Enfield, United Kingdom, (5) Engineering Ingegneria Informatica S.p.A., Rome, Italy

Cultural heritage is not only important from an economic perspective by bringing business opportunities to communities, but also due to its role in shaping our cultural identity. At the same time, cultural heritage is endangered by natural hazards, the effects of which are exacerbated by climate change, threatening the integrity and potentially compromising the value of heritage sites. The goal of the Horizon 2020-funded project STORM (Safeguarding Cultural Heritage through Technical and Organisational Resources Management) is to provide critical decision-making tools to European cultural heritage stakeholders affected by climate change, and to improve cultural heritage sites' climate change resilience through the development of services ranging from comprehensive heritage site monitoring to incorporating information regarding future climate in the disaster risk reduction process.

Here, the STORM project is presented, with a focus on the use of climate change information in the risk assessment and risk management process for cultural heritage. After briefly outlining the STORM-developed risk assessment methodology, the use of climate change information in this process, derived using observations, statistical downscaling and EURO CORDEX data, is discussed in detail based on the example of one of the STORM pilot cultural heritage sites. Combining the climate analysis results with cultural heritage site specific information, risk maps are produced that form the basis for further actions to reduce these risks. In this way, regional scale climate information is translated to a user-friendly format, directly feeding heritage sites' risk management decision-making process, allowing for the STORM-methodology to be viewed as a climate service.