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EUSTACE AIMS (OMOM

EUSTACE will give publicly available daily estimates of surface
air temperature since 1850 across the globe for the first time
by combining surface and satellite data using novel statistical
techniques. To do this, we need to:

* Identify non-climatic discontinuities in daily weather station
data, so users can trust the changes our records show

* Produce consistent uncertainty estimates for satellite skin
temperature retrievals over all surfaces (land, ocean and ice),
so we know how far to trust the estimates everywhere

 Understand how surface temperature measured in situ and
by satellite relates, to estimate air from skin temperature

* Estimate values in areas where we have no in situ or satellite
data, so users can have daily information here
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UNDERSTAND RELATIONSHIP BETWEEN
AIR AND SKIN TEMPERATURE

LSWT,

LSAT,

LST

From Merchant et al., 2013 community paper and roadmap:
http://www.qgeosci-instrum-method-data-syst.net/2/305/2013/qi-2-305-2013.html
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EUSTACE DAILY STATION DATASET
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EUSTACE DAILY STATION DATASET
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Three different algorithms applied to annual and semi-annual
averages of differences between candidate and reference series

+
Absolute test when reference stations not available or
insufficient
Applied to: Toaxr Tmins Tavg= (Tmax ¥ Trmin) / 2 @nd

DTR = Tmax_ Tmin

Gives: a 48-member break point detection ensemble.
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EXAMPLE BREAKPOINT DETECTION
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Detections

Brugnara et al, 2018, submitted

BRENNER (TX_SOUID103851)

Yearly standardized differences with reference series (T Avg)
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EXAMPLE BREAKPOINT DETECTION
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Detections

BRENNER (TX_SOUID103851)

Yearly standardized differences with reference series (T Avg)

Brugnara et al, 2018, submitted
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EXAMPLE BREAKPOINT DETECTION
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Yearly standardized differences with reference series (T Avg)
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EUSTACE SATELLITE OBSERVATIONS
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ESTIMATING CONSISTENT UNCERTAINTIES

IEVALS (@ GO

IN SATELLITE RET
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Random .

* Uncertainties categorised
by effects whose errors
have distinct correlation
properties:

» random

» locally correlated
» (large-scale) correlated

e These are then
propagated through the
alr temperature
estimation
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Temperature difference in situ — satellite (K)

VALIDATION OF LST, IST AND SST
UNCERTAINTY ESTIMATES

Total uncertainty (K)
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ESTIMATING AIR TEMPERATURE FROM
SKIN TEMPERATURE
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i LST/TMAX/TMIN ...

Cape Cod, Massachusetts , 21/06/2013
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GLOBAL ESTIMATES OF AIR TEMPERATURE
FROM SATELLITE SKIN TEMPERATURE

e Separate regression estimates over land,
ocean and ice - a global picture of air
temperature based on the satellite
measurements. Files include:

* A main surface air temperature file per
day per surface type (land, ocean, ice)

* Total uncertainty budget per grid box
and so uncertainty is consistently
expressed for all surface types

* Also an ancillary file per day per
surface type which contains more
detailed uncertainty information.
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e INFILLED ANALYSIS: AIMS

The desirable properties for analysis depend on the application, and sometimes there
is a trade-off between different properties. We are aiming for the following:

Statistical assumptions abm

temperature field in the model should
be consistent with our knowledge of
the physics of the situation

Mathematical model for the
temperature field should be
easy to communicate

Results for temperature field
should have low cross-
validation error

Results for uncertainty
estimates should also validate
well

_—
It should be possible to see
where/when temperature

estimates are not well
constrained by the model

=

Output should be in a form
that makes it easy to retrieve
uncertainty information

\

Where uncertainties are

difficult to determine, they
should overestimate the

uncertainty

—
Output should be in a form
that is easy to use even for
those without expertise in
spatial statistical methods

Data output formats should
work well with commonly
available software tools




OBSERVATION MODEL

Daily mean air temperatures are decomposed into variability at different scales:
yt =T(s", ") + B¢ + €

Where /3" is a sum of observational biases affecting observation 7 and ¢* are non-bias
related observational errors.

yi = An air temperature observation index by 7
T'(s*, ") = Temperature at space/time location (s*, #*)

,-'ff*' = Additive bias associated with observation 7

€' = Error associated with observation %

-
M Oince @’-@J EUSTACE Ln.i®




®
O TEMPERATURE MODEL

Temperature Process Decomposition

» Temperature variability is decomposed into model sub-components with defined
structure in space/time:

T{S:t) :TCHm(S:f) -|—Tlarge(8._f) +T10C&l(8:t)

T'(s,t) = Temperature at space/time location (s, t)
T°"™ (s, t) = Climatological temperature

T'3"2°( s, t) = Large spatialtemporal scale component

T'°°? (s, t) = Daily, short spatial scale component

> -
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®
Omd  TEMPERATURE MODEL

» Temperature variability is decomposed into model sub-components with defined
structure in space/time:

T(S:f) :TCIim(S:f) —I—Tlarge(ﬁ'ﬁf) —|—T10C&1(S:t)

» Each component is a Gaussian linear model (or linearised model).

» Solve each sub-component conditioned on the expected value of other
sub-components.

» Refine the solutions to each sub component by iteratively re-estimating each
sub-component.

> -
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O ANALYSIS METHOD

Spatial interpolation based on the SPDE approach (Lindgren et al 2011):

» Temperatures are modelled as weighted sum of local functions.
» A Bayesian method, where variability/smoothness is controlled by a prior

distribution for the weights.
» Compute the probability density function of the weights conditioned on the

temperature observations.

Temperature

1.0 0.5 0.0

0
—0.5 _1.111 Location

Lindgren, F, H. Rue, J. Lindstrém, (2011). An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73, 4
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» Location dependent spatial correlation;

» Location dependent variability amplitude.

» Nearby locations are correlated:;

>

» Use heirachical triangulation to extract a
region;

» Optimise local parameters for region;

» Plug local parameters into the global
model for global solve.

Implementation is an upcoming priority.

Approach:

o

Local hyperparameter estimation

Spatial correlation length scale; magnitude of variability
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ADVANCED
STANDARD METHOD

Performing the analysis

WE NEED A STARTING POINT

Process
observations

Process
Solve climatology observations

conditioned

Daily local analysis

(.) apminel

Met Office
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ADVANCED . .
STANDARD METHOD Performing the analysis

Process

Process ]
observations Solve climatology observations

conditioned on conditioned on

Process
observations
conditioned
on A, B

EUSTACE ,

Met Office



PRELIMINARY ANALYSIS —JAN 1 2006
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Additionally model Tmax and Tmin via diurnal temperature range
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Product |Desoiption ot

Station series and
E-OBS update

Satellite skin
temperature
retrievals

Skin/air
temperature
relationships

Air temperature
estimates from
satellites

Globally complete
air temperature
fields

Derived products

EUSTACE PRODUCTS

Global data set of daily weather station air temperature
measurements (Tmax and Tmin) with non-climatic breaks
identified — Station time series and gridded for Europe

Daily satellite skin temperature estimates for all surfaces of
Earth with consistent uncertainty estimates — Gridded or along
satellite’s track

Understanding of the relationship between surface skin and
surface air temperature over all surfaces of Earth and in
different seasons — A report on EUSTACE website

Gridded daily estimates of surface air temperature from skin
temperature retrievals

Globally-complete daily fields of surface air temperature over
all corners of Earth since 1850 — Gridded (0.25° lat/lon)
perhaps an ensemble. (Tmax and Tmin over land, Tmean
elsewhere.)

For example, global means and climatologies

Completed
2017

Release
2018

Publish
2018

Complete
2018

Release
2019

Release
2019



®
SUMMARY (@O

 EUSTACE is producing global, daily information on
surface air temperature by combining measurements
made in situ with satellite retrievals

* Non-climatic breaks in global station data have been
identified and removed from European station data

e Consistent estimates of uncertainty have been estimated
for skin temperature retrievals

* Relationships between skin and air temperature have
been used to estimate air temperature from satellite
retrievals

e Statistical interpolation methods are being developed to
create globally- and regionally-complete fields.

* For further information about EUSTACE, visit
https://www.eustaceproject.eu/ e
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