

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

EMS Annual Meeting

Predictability of Medicanes in the ECMWF ensemble forecast system

Enrico Di Muzio, Michael Riemer, Andreas H. Fink, Michael Maier-Gerber

> Budapest, September 5, 2018

EMS Annual Meeting

Predictability of Medicanes in the ECMWF ensemble forecast system

Enrico Di Muzio, Michael Riemer, Andreas H. Fink, Michael Maier-Gerber

Budapest, September 5, 2018

MEDICANES

- Tropical-like (hybrid) cyclones
- Formation and sustainment:
 - originating from the synergy of an upper-level trough and a preexisting low
 - form over much colder SST than hurricanes due to cold upper levels increasing instability
 - may attain a moderate warm core
- Mostly occur in fall and winter
- Features:
 - small size, 100 to 300 km
 - marked axial symmetry
 - strong pressure gradients
 - sustained winds normally reach tropical cyclone intensity, rarely and briefly hurricane intensity
 - occasionally have an eye

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

EMS Annual Meeting

Predictability of Medicanes in the ECMWF ensemble forecast system

Enrico Di Muzio, Michael Riemer, Andreas H. Fink, Michael Maier-Gerber

> Budapest, September 5, 2018

Case studies and data

Case studies and data

Data used:

- ECMWF operational analysis:
 - 16 km resolution until March 2016, then 9 km
 - used as **<u>REFERENCE DATA</u>**
- ECMWF ensemble forecast:
 - 32 km resolution until March 2016, then 18 km
 - ~20 runs (init. times 00Z and 12Z) from 10 to 0 days before each storm
 - 50 members + control forecast

<u>Medicane</u>	<u>Region</u>	<u>Dates</u>	<u>Lowest mslp</u>
Rolf	Balearic Islands	2011, Nov 6-9	996 hPa
Ruven	West. Med., Tyrrhenian Sea	2013, Nov 18-20	991 hPa
llona	West. Med., Tyrrhenian, Adriatic	2014, Jan 19-22	991 hPa
Qendresa	Str. of Sicily, South. Med.	2014, Nov 7-9	986 hPa
Xandra	West. Med., Tyrrhenian	2014, Nov 30-Dec 3	989 hPa
Stephanie	Bay of Biscay	2016, Sep 14-16	998 hPa
Trixie	Southern Med.	2016, Oct 29-31	1001 hPa
Numa	Tyrrhenian Sea, Ionian Sea	2017, Nov 14-19	1002 hPa

Case studies and data

Data used:

- ECMWF operational analysis:
 - 16 km resolution until March 2016, then 9 km
 - used as **<u>REFERENCE DATA</u>**
- ECMWF ensemble forecast:
 - 32 km resolution until March 2016, then 18 km
 - ~20 runs (init. times 00Z and 12Z) from 10 to 0 days before each storm
 - 50 members + control forecast

<u>Medicane</u>	<u>Region</u>	<u>Dates</u>	<u>Lowest mslp</u>
Rolf	Balearic Islands	2011, Nov 6-9	996 hPa
Ruven	West. Med., Tyrrhenian Sea	2013, Nov 18-20	991 hPa
llona	West. Med., Tyrrhenian, Adriatic	2014, Jan 19-22	991 hPa
Qendresa	Str. of Sicily, South. Med.	2014, Nov 7-9	986 hPa
Xandra	West. Med., Tyrrhenian	2014, Nov 30-Dec 3	989 hPa
Stephanie	Bay of Biscay	2016, Sep 14-16	998 hPa
Trixie	Southern Med.	2016, Oct 29-31	1001 hPa
Numa	Tyrrhenian Sea, Ionian Sea	2017, Nov 14-19	1002 hPa

WAVES TO WEATHER Karlsruhe Institute of Technology UNIVERSITÄT MAINZ

Maier-Gerber, M., Pantillon, F., Di Muzio, E., Riemer, M., Fink, A. H., & Knippertz, P. (2017). Birth of the Biscane. *Weather*, **72(8)**, 236-241.

Object-oriented approach

Predictability of Medicanes in the ECMWF ensemble forecast system

Object-oriented approach

• Storm is considered an <u>object</u>

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- ➤ Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- ➤ Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique
 - multiple track points can be matched to one point
 - → <u>time</u> can be (slightly) <u>distorted</u>

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique
 - multiple track points can be matched to one point
 - → <u>time</u> can be (slightly) <u>distorted</u>

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique
 - multiple track points can be matched to one point
 - → <u>time</u> can be (slightly) <u>distorted</u>
- Rationale: <u>small timing forecasts are negligible</u> <u>if storm position is overall well forecast</u>

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique
 - multiple track points can be matched to one point
 - → <u>time</u> can be (slightly) <u>distorted</u>
- Rationale: <u>small timing forecasts are negligible</u> <u>if storm position is overall well forecast</u>
- A <u>track-averaged distance</u> is eventually obtained

Object-oriented approach

- Storm is considered an <u>object</u>
- Forecasts are evaluated in a <u>24-hour period</u> representing the <u>peak of the tropical-like phase</u> of the storm
- Forecast cyclone tracks are <u>nonlinearly</u> matched to the analysis track based on their <u>similarity</u>, via a <u>dynamic time</u> <u>warping</u> technique
 - multiple track points can be matched to one point
 - → <u>time</u> can be (slightly) <u>distorted</u>
- Rationale: <u>small timing forecasts are negligible</u> <u>if storm position is overall well forecast</u>
- A <u>track-averaged distance</u> is eventually obtained
 - ensemble members with distance exceeding a threshold are considered to have no storm

Predictability metrics

Predictability of Medicanes in the ECMWF ensemble forecast system

Predictability metrics

• Mean sea level pressure

Predictability metrics

- Mean sea level pressure
- Symmetry
 - > It represents the <u>axial symmetry</u> of the pressure field in the vicinity of the storm
 - Nondimensional parameter, ranging from -∞ to 1, where 1 corresponds to a perfect circle

Predictability metrics

- Mean sea level pressure
- Symmetry
 - > It represents the <u>axial symmetry</u> of the pressure field in the vicinity of the storm
 - Nondimensional parameter, ranging from -∞ to 1, where 1 corresponds to a perfect circle

S = 1

Predictability metrics

- Mean sea level pressure
- Symmetry
 - > It represents the <u>axial symmetry</u> of the pressure field in the vicinity of the storm
 - Nondimensional parameter, ranging from -∞ to 1, where 1 corresponds to a perfect circle
- Compactness
 - > Azimuthally averaged radial <u>MSLP gradient</u>, expressed in hPa/100 km
 - > In a 150 km radius around the center of the storm

Predictability metrics

- Mean sea level pressure
- Symmetry
 - > It represents the <u>axial symmetry</u> of the pressure field in the vicinity of the storm
 - Nondimensional parameter, ranging from -∞ to 1, where 1 corresponds to a perfect circle
- Compactness
 - > Azimuthally averaged radial <u>MSLP gradient</u>, expressed in hPa/100 km
 - > In a 150 km radius around the center of the storm
- -V_TU
 - > One of the three parameters used in <u>Cyclone Phase Space</u> (CPS) diagrams (Hart 2003)
 - > Upper-level (700-400 hPa) thermal wind \rightarrow proxy for <u>upper-level warm core</u>

Predictability metrics

- Mean sea level pressure
- Symmetry
 - > It represents the <u>axial symmetry</u> of the pressure field in the vicinity of the storm
 - Nondimensional parameter, ranging from -∞ to 1, where 1 corresponds to a perfect circle
- Compactness
 - > Azimuthally averaged radial <u>MSLP gradient</u>, expressed in hPa/100 km
 - > In a 150 km radius around the center of the storm
- -V_TU
 - > One of the three parameters used in <u>Cyclone Phase Space</u> (CPS) diagrams (Hart 2003)
 - > Upper-level (700-400 hPa) thermal wind \rightarrow proxy for <u>upper-level warm core</u>
- Storm position error
 - > Direction of maximum variability is computed via EOF analysis
 - > Spatial distribution represented by ellipse, median by vector

Predictability metrics

- Mean sea level pressure
- Symmetry
 - > It represents the <u>axial symmetry</u> of the pressure field in the vicinity of the storm
 - Nondimensional parameter, ranging from -∞ to 1, where 1 corresponds to a perfect circle
- Compactness
 - > Azimuthally averaged radial <u>MSLP gradient</u>, expressed in hPa/100 km
 - > In a 150 km radius around the center of the storm
- -V_TU
 - > One of the three parameters used in <u>Cyclone Phase Space</u> (CPS) diagrams (Hart 2003)
 - > Upper-level (700-400 hPa) thermal wind \rightarrow proxy for <u>upper-level warm core</u>
- Storm position error
 - > Direction of maximum variability is computed via EOF analysis
 - > Spatial distribution represented by ellipse, median by vector

Predictability of Medicanes in the ECMWF ensemble forecast system

Results - cyclone position

Results - cyclone position

SPREAD

MEDIAN

Results – cyclone thermal structure

Results - cyclone thermal structure

Results - kinematics

Results - kinematics

Conclusions

Conclusions

Results

- There are <u>early signals</u> of cyclone occurrence already 5 to 7 days in advance
- Forecast jumps occur in most cases
- <u>Consistent distribution</u> of cyclone position errors between consecutive forecasts
- Thermal structure forecasts show a <u>non-gradual evolution</u> and only improve at short lead times
- <u>Compactness and symmetry</u> are generally <u>underpredicted</u> but forecasts improve at short lead times

Conclusions

Results

- There are <u>early signals</u> of cyclone occurrence already 5 to 7 days in advance
- Forecast jumps occur in most cases
- <u>Consistent distribution</u> of cyclone position errors between consecutive forecasts
- Thermal structure forecasts show a <u>non-gradual evolution</u> and only improve at short lead times
- <u>Compactness and symmetry</u> are generally <u>underpredicted</u> but forecasts improve at short lead times

Discussion

- The <u>object-based method</u> allows a better identification of features in forecasts, especially at early times
- Medicanes appear to be <u>low-probability events</u> that are hard to capture early in advance
- Forecast jumps are found for most cases, suggesting the existence of <u>predictability</u> <u>barriers</u>
- The ECMWF ensemble model can <u>successfully</u> <u>reproduce Medicanes</u>, albeit at short lead times especially
- There is <u>potential to Medicane forecasts</u> due to early signals of cyclone occurrence and consistent cyclone position

Results - upper-level trough

Results - upper-level trough

WAVES TO WEATHER Karlsruhe Institute of Technology UNIVERSITÄT MAINZ

Predictability of Medicanes in the ECMWF ensemble forecast system

Enrico Di Muzio

Results - upper-level trough

